Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Wednesday, July 01, 2020 at 8:00 PM to 10:00 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?

Previously submitted to: Journal of Medical Internet Research (no longer under consideration since Nov 04, 2021)

Date Submitted: Sep 6, 2021
Open Peer Review Period: Sep 5, 2021 - Oct 31, 2021
(closed for review but you can still tweet)

NOTE: This is an unreviewed Preprint

Warning: This is a unreviewed preprint (What is a preprint?). Readers are warned that the document has not been peer-reviewed by expert/patient reviewers or an academic editor, may contain misleading claims, and is likely to undergo changes before final publication, if accepted, or may have been rejected/withdrawn (a note "no longer under consideration" will appear above).

Peer-review me: Readers with interest and expertise are encouraged to sign up as peer-reviewer, if the paper is within an open peer-review period (in this case, a "Peer-Review Me" button to sign up as reviewer is displayed above). All preprints currently open for review are listed here. Outside of the formal open peer-review period we encourage you to tweet about the preprint.

Citation: Please cite this preprint only for review purposes or for grant applications and CVs (if you are the author).

Final version: If our system detects a final peer-reviewed "version of record" (VoR) published in any journal, a link to that VoR will appear below. Readers are then encourage to cite the VoR instead of this preprint.

Settings: If you are the author, you can login and change the preprint display settings, but the preprint URL/DOI is supposed to be stable and citable, so it should not be removed once posted.

Submit: To post your own preprint, simply submit to any JMIR journal, and choose the appropriate settings to expose your submitted version as preprint.

Warning: This is an author submission that is not peer-reviewed or edited. Preprints - unless they show as "accepted" - should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information.

Adverse Drug Events in the Prevention and Treatment of COVID-19: A Data Mining Study on FDA Adverse Event Reporting System (FAERS)

  • Qiang Guo; 
  • Shaojun Duan; 
  • Yaxi Liu; 
  • Yinxia Yuan

ABSTRACT

Background:

In the emergency situation of COVID-19, off-label therapies and newly developed vaccines may bring the patients adverse drug event (ADE) risks. Data mining based on spontaneous reporting systems (SRSs) is a promising and efficient way to detect potential ADEs so as to help health professionals and patients get rid of these risks.

Objective:

This pharmacovigilance study aimed to investigate the ADEs of “Hot Drugs” in COVID-19 prevention and treatment based on the data of the US Food and Drug Administration (FDA) adverse event reporting system (FAERS).

Methods:

FAERS ADE reports associated with COVID-19 from the 2nd quarter of 2020 to the 2nd quarter of 2021 were retrieved with “Hot Drugs” and frequent ADEs recognized. A combination of support, proportional reporting ratio (PRR) and Chi-square (2) test was applied to detect significant “Hot Drug” & ADE signals by Python programming language on Jupyter notebook.

Results:

13,178 COVID-19 cases were retrieved with 18 “Hot Drugs” and 312 frequent ADEs on “Preferred Term” (PT) level. 18  312 = 5,616 “Drug & ADE” candidates were formed for further data mining. The algorithm finally produced 219 significant ADE signals associated with 17 “Hot Drugs”and 124 ADEs.Some unexpected ADE signals were observed for chloroquine, ritonavir, tocilizumab, Oxford/AstraZeneca COVID-19 Vaccine and Moderna COVID-19 Vaccine.

Conclusions:

Data mining is a promising and efficient way to assist pharmacovigilance work and the result of this paper could help timely recognize ADEs in the prevention and treatment of COVID-19.


 Citation

Please cite as:

Guo Q, Duan S, Liu Y, Yuan Y

Adverse Drug Events in the Prevention and Treatment of COVID-19: A Data Mining Study on FDA Adverse Event Reporting System (FAERS)

JMIR Preprints. 06/09/2021:33393

DOI: 10.2196/preprints.33393

URL: https://preprints.jmir.org/preprint/33393

Download PDF


Request queued. Please wait while the file is being generated. It may take some time.

© The authors. All rights reserved. This is a privileged document currently under peer-review/community review (or an accepted/rejected manuscript). Authors have provided JMIR Publications with an exclusive license to publish this preprint on it's website for review and ahead-of-print citation purposes only. While the final peer-reviewed paper may be licensed under a cc-by license on publication, at this stage authors and publisher expressively prohibit redistribution of this draft paper other than for review purposes.