Accepted for/Published in: JMIR Infodemiology
Date Submitted: Jul 28, 2021
Date Accepted: Jan 12, 2022
Warning: This is an author submission that is not peer-reviewed or edited. Preprints - unless they show as "accepted" - should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information.
Leveraging Twitter Using Artificial Intelligence to Explore Mental Health Insights in the UK During the COVID-19 Pandemic
ABSTRACT
Background:
There is increasing need to explore the value of soft-intelligence, leveraged using the latest artificial intelligence (AI) and natural language processing (NLP) techniques, as a source of analysed evidence to support public health research activity and decision-making.
Objective:
The aim of this study was to further explore the value of soft-intelligence analysed using AI through a case study, which examined a large collection of UK tweets relating to mental health during the COVID-19 pandemic.
Methods:
A search strategy comprising a list of terms related to mental health, COVID-19, and lockdown restrictions was developed to prospectively collate relevant tweets via Twitter’s advanced search application programming interface over a 24-week period. We deployed a specialist NLP platform to explore tweet frequency and sentiment across the UK and identify key topics of discussion. A series of keyword filters were used to clean the initial data retrieved and also set up to track specific mental health problems. Qualitative document analysis was carried out to further explore and expand upon the results generated by the NLP platform. All collated tweets were anonymised
Results:
We identified and analysed 286,902 tweets posted from UK user accounts from 23 July 2020 to 6 January 2021. The average sentiment score was 50%, suggesting overall neutral sentiment across all tweets over the study period. Major fluctuations in volume and sentiment appeared to coincide with key changes to any local and/or national social-distancing measures. Tweets around mental health were polarising, discussed with both positive and negative sentiment. Key topics of consistent discussion over the study period included the impact of the pandemic on people’s mental health (both positively and negatively), fear and anxiety over lockdowns, and anger and mistrust toward the government.
Conclusions:
Through the primary use of an AI-based NLP platform, we were able to rapidly mine and analyse emerging health-related insights from UK tweets into how the pandemic may be impacting people’s mental health and well-being. This type of real-time analysed evidence could act as a useful intelligence source that agencies, local leaders, and health care decision makers can potentially draw from, particularly during a health crisis.
Citation
Request queued. Please wait while the file is being generated. It may take some time.
Copyright
© The authors. All rights reserved. This is a privileged document currently under peer-review/community review (or an accepted/rejected manuscript). Authors have provided JMIR Publications with an exclusive license to publish this preprint on it's website for review and ahead-of-print citation purposes only. While the final peer-reviewed paper may be licensed under a cc-by license on publication, at this stage authors and publisher expressively prohibit redistribution of this draft paper other than for review purposes.