The Effortless Assessment of Risk States (E.A.R.S.) Tool

Monika N. Lind
Michelle L. Byrne, Ph.D.
Geordie Wicks
Alec M. Smidt, M.S.
Nicholas B. Allen, Ph.D.

University of Oregon

Corresponding author: Nicholas B. Allen, Ph.D.
Email: nallen3@uoregon.edu
Phone: (541) 346-4075
Fax: (541) 346-4911

Abstract

Background: To predict and prevent mental health crises, we must develop new approaches that can provide a dramatic advance in the effectiveness, timeliness, and scalability of our interventions. Current methods of predicting mental health crises (e.g., clinical monitoring, screening) usually fail on most, if not all, of these criteria. Lucky for us, 77% of Americans carry with them an unprecedented opportunity to detect risk states and provide precise, life-saving interventions. Smart phones represent an opportunity to empower individuals to leverage the data they generate through their normal phone use to predict and prevent mental health crises.

Objective: We believe that with enough high-quality, passive mobile sensing data, we may be able to generate predictive machine learning algorithms to solve previously intractable problems and identify risk states before they become crises. To test this hypothesis, our team built the Effortless Assessment of Risk States (EARS) tool.

Methods: The EARS tool captures multiple indices of a person's social and affective behavior via their naturalistic use of a smart phone. These indices include facial expressions, acoustic vocal quality, natural language use, physical activity, music choice, and geographical location, among others. Critically, the EARS tool collects these data passively, with almost no burden on the user. We programmed the EARS tool in Java for the Android mobile platform. In building the EARS tool, we concentrated on two main considerations: (1) privacy and encryption and (2) phone use impact.

Results: In a pilot study (N = 24), participants tolerated the EARS tool well, reporting minimal burden. None of the participants who completed the study reported needing to use the provided battery packs. Current testing on a range of phones indicated the tool will consume approximately 15% of the battery over a 16 hour period. Installation of the EARS tool causes minimal change in the UI/UX. Once installation is completed, the only difference the user will notice is the custom keyboard.

Conclusions: The EARS tool offers an innovative approach to passive mobile sensing by emphasizing the centrality of a person’s social life to their well-being. We built the EARS tool to
power cutting-edge research, with the ultimate goal of leveraging “individual big data” to empower people.

Keywords: passive mobile sensing; personal sensing; mobile sensing; mental health; risk assessment; crisis prevention; individual big data
Motivation

If health professionals cannot predict and prevent mental health crises, the field faces a crisis of its own. Although we have many evidence-based treatments, greater population-wide access to these treatments has failed to yield significant reductions in the burden of mental health disorders [1–3]. This failure manifests, for example, in the meteoric rise of Major Depression on the World Health Organization’s rankings of conditions responsible for lost years of healthy life [4] and in the recent increase in suicide rates in some 50 WHO member states, including an increase of 28% in the USA from 2000 to 2015 [5,6]. To predict and prevent mental health crises, we must develop new approaches that can provide a dramatic advance in the effectiveness, timeliness, and scalability of our interventions.

Intervening at critical moments in a person’s life—i.e., during mental health crises, including times of risk for suicide, self-harm, psychotic breakdown, substance use relapse, interpersonal loss—could dramatically enhance the effectiveness of mental health intervention. Even with the most extreme mental health crises, such as acute suicide risk, we find that the most effective interventions provide barriers to harmful behaviors at the critical moment of action. Take for example blister packaging on medications commonly used in suicide attempts. By placing a time-consuming, distracting barrier at just the right moment between a person and a suicide attempt, public health policy makers saved lives [7]. If we can improve the timeliness of our interventions, then even low-intensity interventions can have a major impact on improving health and saving lives [8]. Just-In-Time Adaptive Interventions (JITAIs), delivered via mobile health applications and tailored to a person’s environment and internal state, headline a host of exciting developments in low-intensity, high-impact interventions [9].

Before we can take full advantage of these approaches, however, we face a critical challenge: prediction. It is one thing to recognize the tremendous power of precise timing, and it is quite another to possess the ability to identify the right time. Furthermore, as we face the challenge of predicting mental health crises, we must commit ourselves to meeting the highest standards of reliability, feasibility, scalability, and affordability. Given the large proportion of individuals experiencing mental health crises who do not receive treatment [10], prediction methods must reach those not currently in traditional mental health care. Current methods of predicting mental health crises (e.g., clinical monitoring, screening) usually fail on most, if not all, of these criteria.

Lucky for us, 77% of Americans carry with them an unprecedented opportunity to detect risk states and provide precise, life-saving interventions [11]. Smart phones enable the kind of access and insight into an individual’s behavior and mood that clinicians dream of. Packed with sensors and integral to many people’s lives, smart phones represent an opportunity to empower individuals (and their clinicians, if individuals so choose) to leverage the data they generate every day through their normal phone use to predict and prevent mental health crises. This approach to data collection is called “passive mobile sensing.” We believe that with enough high-quality, passive mobile sensing data, we may be able to generate predictive machine learning algorithms to solve previously intractable problems and identify risk states before they become crises. To test this hypothesis, our team built the Effortless Assessment of Risk States (EARS) tool.
Justification

Our lab at the University of Oregon has developed and piloted the EARS tool. We designed the EARS tool to capture multiple indices of behavior through an individual’s normal phone use. We selected these indices based on findings that demonstrate their links to mental health states like depression and suicidality. These indices include physical activity, geolocation, sleep, phone use duration, music choice, facial expressions, acoustic vocal quality, and natural language use.

Physical activity, geolocation, sleep, phone use duration, and music choice data convey information about how individuals interact with their environments. Physical activity has a rich history of positive outcomes for mental health, including a recent finding from the Netherlands Mental Health Survey and Incidence Study (N = 7,076) that showed a strong correlation between more exercise during leisure time and both a lower incidence of mood and anxiety disorders and a faster recovery when those disorders do strike [12]. Geolocation overlaps with physical activity in part, but it can also provide important insight into the quality of a person’s daily movement, and the environments in which they are spending their time. Saeb and colleagues demonstrated the power of three discrete movement quality variables derived from smart phone GPS data to predict depressive symptom severity [13]. Meanwhile, environmental factors indexed by GPS data, like current city living and exposure to green areas, have consequences for social stress processing and long-term mental health outcomes [14,15]. Sleep provides another powerful signal to help us predict depression and suicidality. One of the most common prodromal features of depression, sleep disturbance (including delayed sleep onset, difficulty staying asleep, and early morning wakening), also relates significantly to suicidality [16,17]. While evidence suggests that phone use duration may impact depression and suicidality via sleep disturbance [18], we believe that phone use duration also deserves study in its own right. For example, Thomée, Härenstam, and Hagberg found that high phone use predicted higher depressive symptoms, but not sleep disturbance, in women one year later [19]. Finally, music choice may provide affective insight as recent findings suggest that listeners choose music to satisfy emotional needs, especially during periods of negative mood [20].

In contrast with physical activity, geolocation, sleep, phone use duration, and music choice, the following indices directly reflect an individual’s interpersonal engagement. Facial expressions convey information about an individual’s experience of depression in straightforward ways. For example, Girard and colleagues found that participants with elevated depressive symptoms expressed fewer smiles and more signifiers of disgust [21]. Capturing these indicators of mood in a person’s facial expressions has become much more efficient and affordable in recent years with the advent of automated facial analysis [22]. While perhaps less intuitive than facial expression indicators, several aspects of acoustic vocal quality provide robust measures of depression and suicidality. These aspects include speech rate, vocal prosody, vowel space, and other machine learning-derived features [23–26]. Whereas acoustic voice quality ignores the semantic content of communication, natural language processing focuses on it. In addition to strong depression signals in written language in laboratory settings [27], accumulating evidence suggests that social media natural language content, especially expressions of anger and sadness, may identify suicidal individuals [28,29].

We do not pretend to be the first research team to recognize the potential of passive mobile sensing to capture these behavioral indices. Numerous passive mobile sensing tools capture one or more of the variables described above. Table 1 illustrates a comparison of some of
the available tools. Passive mobile sensing applications currently focus on sensor data (e.g., GPS, accelerometer) and call and text occurrence (e.g., when calls and SMS happen, but not their contents). The EARS tool improves on these applications by adding several indices relevant to interpersonal communication.

Table 1. A comparison of research-grade passive mobile sensing applications. (The last three features, video diary, audio diary, and EMA, are not passive, that is, they require active engagement from the user.)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geolocation</td>
<td>✔</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>✔</td>
</tr>
<tr>
<td>Bluetooth colocation</td>
<td>✔</td>
</tr>
<tr>
<td>Ambient light</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Ambient noise</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Charging time</td>
<td></td>
</tr>
<tr>
<td>Screen-on time</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>App usage</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMS frequency</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen touch events</td>
<td></td>
</tr>
<tr>
<td>SMS transcripts</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Call frequency</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email frequency</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Browser history</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Calendar event frequency</td>
<td></td>
</tr>
<tr>
<td>In-call voice quality</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>All typed text</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Facial expressions</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Music choice</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Video diary</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Audio diary</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>EMA</td>
<td>✔</td>
</tr>
</tbody>
</table>

What EARS Does

The EARS tool captures multiple indices of a person's social and affective behavior via their naturalistic use of a smart phone. These indices include facial expressions, acoustic vocal quality, natural language use, physical activity, music choice, and geographical location. Critically, the EARS tool collects these data passively, with almost no burden on the user. For example, the EARS tool collects all language typed into the phone via a custom-built keyboard.
These various data channels are encrypted and uploaded to a secure cloud server, then downloaded and analyzed in our lab. Future iterations of the EARS tool will incorporate additional variables and automated analysis on the mobile device itself.

The first version of the EARS tool included four key features. A custom keyboard logged every nth word typed into the phone across all apps (n to be determined by the research team). A patch into the Google Fit API collected physical activity data, including walking, running, biking, and car travel. A daily video diary used a persistent notification to prompt users to open the EARS app and record a two-minute video of themselves talking about their day. While the video diary required active engagement of the user (similar to EMA), it provided a critical bridge in the early EARS tool while our team worked to develop passive means to capture facial expression and acoustic voice data. Each of the above data types (text entry, physical activity, video diary) were tagged with the final data type of the first EARS tool: geolocation information. Since the Google Fit upload and video diary each occurred only once per day, the keyboard logger provided the richest source of geolocation data. Every time a user entered text into their phone, that text entry triggered a geotag. This approach to gathering geolocation data allowed us to avoid the battery drain of constant GPS data collection.

We piloted the first version of the EARS tool in the Effortless Assessment of Stressful Experiences (EASE) study. The EASE study employed an academic stress paradigm to test whether the EARS tool generates data that index stress. We assessed 24 undergraduate students over fall and winter terms of 2016 and 2017 and collected week-long sets of passive mobile sensing data, twice. The baseline assessment occurred 3-7 weeks before the student’s first final exam (avoiding weeks when they had a midterm or other major project due). The follow-up assessment occurred during the week prior to the student’s last final exam. Self-report questionnaires of perceived stress and mental health symptoms were administered on the last day of each assessment and asked about symptoms over the past week. Participants tolerated the EARS tool well, reporting minimal burden. One individual declined participating in the study due to privacy concerns, and one individual declined due to dissatisfaction with the EARS keyboard. One participant dropped out due to privacy concerns, and one participant dropped out without explanation. None of the participants who completed the study reported needing to use the provided battery packs.

The current version of the EARS tool includes the four features of the original, plus several enhancements. One major enhancement is the addition of a “selfie scraper,” which is a pipeline that gathers all photos captured by the device camera and encrypts and uploads them to our lab. During the decryption process, facial recognition software scans the photos and retains only selfies of the participant, discarding all photos that do not include the user’s face or that include other faces. This feature allows us to collect facial expression data passively, bringing us a step closer to full passivity. The current version takes another step closer to full passivity with the addition of passive voice collection. The EARS tool records the device microphone (but not the earpiece) during phone calls, encrypts these recordings, then uploads them for acoustic voice quality analysis. Another important upgrade of the current version is the constant collection of inertial measurement unit (IMU) data. These data power fine-grained analysis of physical activity and sleep, over and above what we can glean from Google Fit data. A fourth new feature monitors the notification center to capture what music the phone user listens to across various music apps. Finally, we have added the automatic collection of two indices of phone use: screen-on time and app usage time.
The next version of the EARS tool, currently in development, aims to enrich existing features, facilitate integration with wearable technology, and add customization for research teams. To accommodate participants whose employment or other life circumstances create additional confidentiality concerns, the next version of the EARS tool will include an optional privacy toggle on the keyboard logger. The toggle will enable the participant to disable text collection temporarily. This will allow lawyers, therapists, and others to participate in research using the EARS tool while still protecting their confidential communication to clients. To facilitate integration of wearable technology, the next version of the EARS tool will include a mechanism to collect raw data from wearable applications. This will improve efficiency of data collection and reduce the burden on the participant because it will cut out the step of signing in to each participant’s individual wearable account to download the data. It will also broaden the data analysis possibilities because raw wearable data may yield data on respiratory sinus arrhythmia, a measure of parasympathetic nervous system activity that is associated with emotional and mental health states and other physiological indices that data processed through the wearable’s consumer app might obscure [41]. Finally, we hope to share the EARS tool with other research teams, and we recognize that different research questions will call for different passive mobile sensing variables. As such, we plan to make the EARS tool fully modular, so that teams seeking to test hypotheses related to, say, natural language use and selfies, do not also have to collect geolocation and app usage data. This will help to optimize the tool for battery drain and prevent unnecessary collection of confidential data.

A person’s smartphone use over time generates what we call, “individual big data.” Individual big data are comprised of time-intensive, detail-rich data streams that capture the trends and idiosyncrasies of a person’s existence. The EARS tool seeks to harness these individual big data to power innovation and insight. Our research team aims to detect risk states within participants by determining a person’s behavioral set point and analyzing their deviations around that set point. We see this goal as one of many possible applications of the EARS tool.
EARS Engineering

We programmed the EARS tool in Java for the Android mobile platform. In building the EARS tool, we concentrated on two main considerations: (1) privacy and encryption and (2) phone use impact. The EARS tool collects a massive amount of personal data, so ensuring these data remain secure and cannot be used to identify users is of paramount concern. In order to achieve this, we have implemented a process to de-identify and encrypt the data.

To de-identify the data, the EARS tool uses the Android Secure Device ID (SSAID) to store and identify the data. This device ID is only accessible when an Android user gives specific permission, and is linked only to the hardware device, not a user or account name. We collect the SSAID and participant name at install and store this ID key on non-cloud based secure university servers. As a result, in the event of a breach of Amazon Web Services (AWS), there is no easy way for someone outside of our team to link the data with the name of the user who generated it. Obviously this basic first step does not protect the actual content of the data. Therefore, we employ state of the art encryption at multiple points in the pipeline.

After the sensors generate the data, the data are immediately encrypted by the EARS tool using AES-128 bit encryption, a government standard endorsed by the National Institute of Standards and Technology. Upon encryption, the unencrypted data are immediately deleted. When transmitting the data to AWS, the EARS tool uses a SSL (Secure Socket Layer) connection to the server, meaning all data in transit are encrypted a second time using the industry standard.
for encrypting data travelling between networks. After transmission to the cloud, the EARS tool then deletes the encrypted data from the phone’s memory. Upon upload to AWS, the data are then also protected by Amazon’s Server Side encryption, which uses 256-bit AES encryption.

By encrypting the user data twice, once on the phone using our own encryption, and a second time on the AWS servers using Amazon’s, we can ensure the data cannot be accessed at any time by anyone outside our team. This means even Amazon does not have access to the unencrypted data, either by rogue employees or government demands. We aimed to improve acceptability of the EARS tool for users by taking these steps to protect users’ data and allay privacy concerns.

We took another important step toward maximizing acceptability of the EARS tool by prioritizing phone use impact. The EARS tool runs in the background at all times. In order to minimize the impact on the user’s day to day experience, we have endeavoured to make the EARS tool as lightweight as possible. First, the tool consumes around 30MB of RAM. Most Android phones have between 2-4 GB of RAM, meaning the tool uses between 1-2% of memory. Second, the usage of phone sensors can have a large impact on the battery life of a phone, as they draw relatively large amounts of power. In order to combat this we have moved most cloud uploads to late at night when the phone is usually plugged in, and only when the device is connected to a Wi-Fi network. We also limit GPS readings to once every 5 minutes, and if possible get location data from known Wi-Fi points, rather than connect to satellite. Current testing on a range of phones indicated the tool will consume approximately 15% of the battery over a 16 hour period. Third and finally, installation of the EARS tool causes minimal change in the UI/UX. Once installation is completed, the only difference the user will notice is the custom keyboard. With the exception of the optional video diary feature, everything else is collected in the background with no user interaction.

The EARS tool is hosted on GitHub on the Center for Digital Mental Health’s page (GitHub username: C4DMH). It is licensed under the Apache 2.0 open source licence, a permissive free software licence that enables the free use, distribution, and modification of the EARS tool [52].

Considerations

We must temper our enthusiasm and urgency with careful consideration of several challenges. First, EARS currently works only on Android phones. While Android boasts two billion users worldwide, some 700 million people use an iPhone [53]. In the interest of eliminating as many sample selection confounds as possible, we are working towards adapting the EARS tool for iOS. Given that most app developers begin on one platform then port their product over to the other, we believe this is a readily solvable problem, although variation in software and sensors will likely result in some differences between the versions. The 4.6 billion people on this planet who do not use an Android or iOS smartphone present a much more stubborn challenge. That most of these people live in low- or middle-income countries and/or in countries outside of Europe and North America gives us pause, as we consider the historical affluent- and White-centric approach of clinical psychology. The steady increase in smartphone adoption around the world will probably reduce the impact of this limitation, but we remain mindful that the EARS tool carries built-in socioeconomic and cultural limitations alongside its passive mobile sensing features.

Those passive mobile sensing features generate significant ethical concerns as well, principal among which are recruitment and enrollment methods and protecting participants' data.
These concerns loom large in mobile health because they reflect two of the most prominent ways in which for-profit app developers currently exploit smartphone users. App developers bury unsavory content in Terms of Service agreements they know users are unlikely to read, often leveraging these to sell users' data. The critical task, we believe, is to carefully assess who is empowered by the data. We value the empowerment of the user (e.g., to take better control of their mental health) over the empowerment of a commercial or government entity (e.g., acquiring user data without any benefit to the user). We oppose practices that empower others at the expense of the user and uphold respect for the user's autonomy by insisting on an opt-in model for all applications of the EARS tool. This means that we reject any protocol that employs auto-enrollment in its recruitment approach, e.g., embedding EARS features into an update of an existing app or requiring members of a specific health plan to participate. To date, we have acquired Informed Consent in person. As our studies scale up and out, however, we will need to acquire Informed Consent remotely. To that end, we are developing a feature in the EARS tool to administer and confirm a participant's Informed Consent.

Once a participant has opted in, our duty to protect their confidentiality and anonymity grows exponentially. The EARS tool encrypts all data locally on the phone as soon as the user generates it. Those encrypted data arrive in our lab via Amazon Web Services, a HIPAA-compliant commercial cloud service which provides state of the art security in transit. Upon completion of or withdrawal from a study, a participant’s uninstallation of the EARS tool automatically deletes all encrypted EARS data still residing on the phone. As a critical next step to ensure data privacy as we expand this line of research, we aim to conduct processing and analysis locally, on the participant’s phone, as soon as possible. In our current protocol, during a study, a participant’s encrypted data exist in three locations: the phone, the AWS cloud, and our lab’s secure server. These three storage locations increase the risk to the participant. As phones become more powerful and our research generates optimized data analysis algorithms, we aim to limit participants’ exposure to risk of privacy breach by executing our protocols within the phones themselves. We will take the first step in that direction soon – recent advances in facial recognition and automatic expression analysis software should allow us to locate the “selfie scraper” entirely on the phone so that only de-identified output will travel via the cloud to our lab.

Future Directions

Heretofore, we have described in detail the data collection capabilities of the EARS tool. EARS data, however, are only as useful as the research questions they aim to answer. The next steps for our team include (1) testing the EARS tool with a large, representative sample to establish norms for each behavior and (2) deploying the EARS tool in the next wave of an ongoing longitudinal study of adolescent girls. We are especially eager to collaborate with adolescent participants because they are digital natives, and we believe their data may be especially revealing.

Our team built this tool with the goal of predicting and preventing mental health crises like suicide, but we believe that the EARS tool could serve many uses. The EARS tool could provide rich, observational data in efficacy and effectiveness studies in clinical psychology. It could also index general wellness via fine-grained data on activity, sleep, and mood for public health researchers. Furthermore, if we find that EARS data do predict changes in behavior and mood, the EARS tool could provide clinical assessment and actionable feedback for users and their caregivers or clinicians. We imagine exciting applications for social and personality
psychologists to test self-report and laboratory findings against unobtrusive, ecologically valid behavioral data. These applications of the EARS tool depend on rigorous signal processing, exploratory analysis, hypothesis testing, and machine learning methods. The potential is huge, and the work calls for the creative contributions of researchers from myriad areas of study.

Conclusion

Engineers, mobile phone programmers, psychologists, and data scientists have done extraordinary work over the last decade, the sum of which could revolutionize mental health care. We believe that passive mobile sensing could be the catalyst of that revolution. The EARS tool offers an innovative approach to passive mobile sensing by emphasizing the centrality of a person’s social life to their well-being. We built the EARS tool to power cutting-edge research, with the ultimate goal of leveraging individual big data to empower people.

Acknowledgements

This work was supported by a grant from the Stress Measurement Network, National Institute on Aging (R24AG048024). Dr. Byrne is supported by an NIMH K01 Award (K01MH111951). The authors would like to thank Benjamin W. Nelson and Melissa D. Latham for their contributions to this manuscript. The authors also thank Liesel Hess and Justin Swanson for their early contributions to the programming of the EARS tool. Finally, the authors thank the Obama White House 2016 Opportunity Project for facilitating the further development of the EARS tool.

Conflicts of Interest

The authors declare no conflicts of interest.
References

23. Cohn JF, Matthews I, Torre F De. Detecting depression from facial actions and vocal prosody. 2009. [doi: 10.1109/ACII.2009.5349358]

37. CBITs TECH Web Site. Purple Robot [Internet]. Available from: https://tech.cbits.northwestern.edu/purple-robot/. Archived at: http://www.webcitation.org/6xBFQaGeq

44. Mushu. Lock [Digital image] [Internet]. Available from: https://thenounproject.com. Archived at: http://www.webcitation.org/6xBgSbXEu
46. i cons. Music [Digital image] [Internet]. Available from: https://thenounproject.com. Archived at: http://www.webcitation.org/6xBgkxeV1
54. Bader D. The Galaxy S8 has face recognition and iris scanning, and you have to choose one. 2017 Apr 7; Available from: https://www.androidcentral.com/galaxy-s8-face-recognition-iris-scanning. Archived at: http://www.webcitation.org/6xBhGxDdbD