Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Wednesday, July 01, 2020 at 8:00 PM to 10:00 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?

Accepted for/Published in: JMIR Infodemiology

Date Submitted: Mar 17, 2023
Date Accepted: Jun 26, 2023
Date Submitted to PubMed: Jul 9, 2023

The final, peer-reviewed published version of this preprint can be found here:

Using Machine Learning Technology (Early Artificial Intelligence–Supported Response With Social Listening Platform) to Enhance Digital Social Understanding for the COVID-19 Infodemic: Development and Implementation Study

White BK, Gombert A, Nguyen T, Yau B, Ishizumi A, Kirchner L, León A, Wilson H, Jaramillo-Gutierrez G, Cerquides J, D’Agostino M, Salvi C, Sreenath RS, Rambaud K, Samhouri D, Briand S, Purnat TD

Using Machine Learning Technology (Early Artificial Intelligence–Supported Response With Social Listening Platform) to Enhance Digital Social Understanding for the COVID-19 Infodemic: Development and Implementation Study

JMIR Infodemiology 2023;3:e47317

DOI: 10.2196/47317

PMID: 37422854

PMCID: 10477919

Using machine learning technology to enhance digital social understanding for the COVID-19 infodemic: Development and implementation of the Early AI-Supported Response with Social Listening (EARS) platform

  • Becky K White; 
  • Arnault Gombert; 
  • Tim Nguyen; 
  • Brian Yau; 
  • Atsuyoshi Ishizumi; 
  • Laura Kirchner; 
  • Alicia León; 
  • Harry Wilson; 
  • Giovanna Jaramillo-Gutierrez; 
  • Jesus Cerquides; 
  • Marcelo D’Agostino; 
  • Cristiana Salvi; 
  • Ravi Shankar Sreenath; 
  • Kimberly Rambaud; 
  • Dalia Samhouri; 
  • Sylvie Briand; 
  • Tina D Purnat

ABSTRACT

Background:

Amidst the COVID-19 pandemic, there has been a need for rapid social understanding to inform infodemic management and response. While social media analysis platforms have traditionally been designed for commercial brands for marketing and sales purposes, it has been under-utilized and under-adapted for comprehensive understanding of social dynamics in areas such as public health. Traditional systems have challenges for public health usage and new tools and innovative methods are needed. The WHO Early AI-Supported Response with Social Listening (EARS) platform was developed to overcome some of these challenges.

Objective:

To describe the methodological approach to the development of the EARS platform, including data sourcing, development and validation of a machine learning categorization approach, as well as results from the pilot.

Methods:

Data for EARS is collected daily from online conversations in publicly available sources, including Twitter, Facebook public pages, online forums, news comments, and blogs in 9 languages. Public health and social media experts developed a taxonomy to categorize COVID-19 narratives to 5 relevant main categories and 41 sub-categories. We developed a semi-supervised machine learning algorithm to categorize social media posts to categories and various filters. To validate the results obtained by the machine learning-based approach we compared it to a search filters methodology applying boolean queries with the same amount of information and measured recall and precision. A Hotelling T2 was run to determine the effect of the classification method on the combined variables.

Results:

The EARS platform has been developed, validated and applied to monitor the conversation about COVID-19 since December 2020. A total of 215,469,045 social posts were collected for processing from December 2020 to February 2022. The machine learning algorithm outperformed the boolean search filters method by a large margin for precision and recall in both English and Spanish (p<.001). Demographic and other filters provided useful insights on data, and gender split of users in the platform was largely consistent with population level data on social media use.

Conclusions:

The EARS platform has been specifically developed to address the changing needs of public health analysts during the COVID-19 pandemic. The application of a public health taxonomy and AI technology to a user-friendly social listening platform, accessible directly by analysts, is a significant step in better enabling understanding of global narratives. The platform was designed in a way to allow for scalability, and iterations and new countries and languages have been added. This research has shown that a machine learning approach is more accurate than using only keywords and has benefit for categorizing and understanding large amounts of digital social data during an infodemic. Further technical developments are needed and planned to provide continuous improvements and meet the challenges in generation of infodemic insights from social media faced by infodemic managers and public health professionals.


 Citation

Please cite as:

White BK, Gombert A, Nguyen T, Yau B, Ishizumi A, Kirchner L, León A, Wilson H, Jaramillo-Gutierrez G, Cerquides J, D’Agostino M, Salvi C, Sreenath RS, Rambaud K, Samhouri D, Briand S, Purnat TD

Using Machine Learning Technology (Early Artificial Intelligence–Supported Response With Social Listening Platform) to Enhance Digital Social Understanding for the COVID-19 Infodemic: Development and Implementation Study

JMIR Infodemiology 2023;3:e47317

DOI: 10.2196/47317

PMID: 37422854

PMCID: 10477919

Download PDF


Request queued. Please wait while the file is being generated. It may take some time.

© The authors. All rights reserved. This is a privileged document currently under peer-review/community review (or an accepted/rejected manuscript). Authors have provided JMIR Publications with an exclusive license to publish this preprint on it's website for review and ahead-of-print citation purposes only. While the final peer-reviewed paper may be licensed under a cc-by license on publication, at this stage authors and publisher expressively prohibit redistribution of this draft paper other than for review purposes.