Accepted for/Published in: JMIR Biomedical Engineering
Date Submitted: Apr 18, 2019
Open Peer Review Period: Apr 23, 2019 - Apr 26, 2019
Date Accepted: Jul 8, 2019
(closed for review but you can still tweet)
Warning: This is an author submission that is not peer-reviewed or edited. Preprints - unless they show as "accepted" - should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information.
Modular Catheter Systems in Minimally Invasive Interventional Medical Procedures: Case Study
Background:
Medical device catheters that are used in minimally invasive interventional medical procedures all follow the same integrated design and use paradigm. The features and elements of any catheter device are combined in a single unitary construction. A modular approach to the design, construction, and use of these types of interventional catheters may provide significant advantages and benefits not available with an integrated design paradigm.
Objective:
This paper aimed to present the design of a modular catheter system and the findings from an initial veterinary use as a case study for the potential of modular catheter systems in general.
Methods:
A modular catheter system was designed using commercially available angioplasty balloon dilatation catheters as one module in the system and a custom designed scoring adapter as the other module. The scoring adapter incorporates wires to add scoring features to the angioplasty balloon catheter to improve the dilatation performance during a pulmonary valvuloplasty procedure. The scoring adapter also includes a novel attachment mechanism to couple the scoring adapter to any 0.035-inch guidewire–compatible angioplasty balloon catheter.
Results:
The modular catheter system was successfully designed, manufactured, and used in an initial minimally invasive veterinary cardiovascular intervention to treat a case of canine subvalvular pulmonary stenosis. The scoring adapter and angioplasty balloon catheter were successfully combined tableside in the operating room at the time of the procedure and used to successfully dilate the subvalvular obstruction.
Conclusions:
The successful design and use of the presented modular catheter system demonstrates the feasibility and potential advantages of this type of paradigm to enable physicians to create interventional catheter devices at the time of a procedure guided by the procedural needs.
Citation
Request queued. Please wait while the file is being generated. It may take some time.
Copyright
© The authors. All rights reserved. This is a privileged document currently under peer-review/community review (or an accepted/rejected manuscript). Authors have provided JMIR Publications with an exclusive license to publish this preprint on it's website for review and ahead-of-print citation purposes only. While the final peer-reviewed paper may be licensed under a cc-by license on publication, at this stage authors and publisher expressively prohibit redistribution of this draft paper other than for review purposes.