Target journal: Journal of Medical Internet Research

Type of paper: Original article

Title: Four phases for user-centered digital development: Integrating academic and industry approaches to health information technology

Authors: Sara Chokshi, Devin Mann

NYU Langone Health School of Medicine, New York, NY

Corresponding author: Devin Mann, MD

NYU Langone Health Translational Research Building

18227 East 30th St., Rm 743

New York, NY 10016

646-263-9026

Devin.Mann@nyumc.org
ABSTRACT

Background
Design thinking and human-centered design approaches have become increasingly common in the healthcare literature, particularly in relation to health information technology (HIT), as a pathway toward the development of usable, diffusible tools and processes. There is a need in academic medical centers tasked with digital innovation for a comprehensive process model to guide development that incorporates current industry trends including design thinking and the lean and agile approaches to digital development.

Objective
To describe the foundations and phases of our model for user centered HIT development.

Methods
Based on our experience, we established an integrated approach and rigorous process for HIT development that leverages design thinking, lean and agile strategies in a pragmatic way while preserving methodological integrity in support of academic research goals.

Results
A four phased pragmatic process model for user-centered digital development in HIT.

Conclusions
The culmination of diverse innovation projects, this model for user-centered HIT development represents a multi-phased, high fidelity process for making more creative, flexible, efficient and effective tools. This model is a critical step in building a rigorous approach to HIT design that incorporates a multidisciplinary, pragmatic perspective, combined with academic research practices and state of the art approaches to digital product development to meet the unique needs of healthcare.
MeSH key words: user-centered design, innovation, heath information technology, academic medical centers, process model, digital health
INTRODUCTION

User-centered design has been applied in the development and testing of software and technology for decades; however, the application of user-centered design (UCD) and design thinking in healthcare innovation and information technology (HIT) is a more recent phenomenon.\[1-3\] Given that the field of UCD in HIT is relatively nascent, albeit increasingly common, there has yet to be established a comprehensive process model for applying this approach and its associated methodologies in this field. In this paper, we propose an integrated and pragmatic process model for the development and testing of HIT based on our experience using a rapid cycle, iterative, user-centered approach to the development and implementation of various types of innovations for healthcare research and clinical delivery. Pulling from relevant academic disciplines as well as industries outside of healthcare, we propose an integrated model for HIT development and implementation that incorporates and builds upon popular trends in innovation today, offering a multi-phased, comprehensive, best practices in research-based approach to digital development in healthcare.

Innovation in academic medicine

Innovation has become a priority in many academic medical centers, with leaders in health services delivery calling for increased innovation and experimentation within their organizations through new research and operational processes that are more nimble, lightweight and iterative than is typical in traditional academic medicine.\[4-7\] While HIT innovation has lagged behind, software development and other design related industries outside of healthcare have long since incorporated strategic design processes, combining major elements of design thinking, lean startup and agile development principles.\[8 9\] These user-centered approaches are compatible with an increasingly patient-centered health system in which the goal of development are tools and processes that work for the humans who will use them, including physicians, other types of providers, staff, as well as patients and their families.\[10-12\]
Academic goals and industry demands

Design thinking and human-centered design approaches in general have become increasingly common in the scientific literature, particularly in relation to HIT, as a pathway toward the development of usable, diffusible tools and processes. [1 13 14] While design thinking and user-centricity as concepts are born out of industry, they are relatively new concepts to academic healthcare.[1 14 15] Core tenets such as the centrality of the user-journey and the concept of "empathy" have a rich history as cornerstone ideas in the social science literature.[16-18] Anthropologists have been conducting ethnographic research on health and illness since the inception of the discipline; deep understandings of the social and organizational features of work and roles, particularly in medicine, has long been an object of the sociological imagination. It is the design thinking movement,[19] however, that has pragmatized and popularized these social science research practices, lending them to wider use within scientific circles, including HIT development.[17]

From the perspective of an academic health institution, any digital development process must take into account the need to balance tensions between demands of HIT product development and our academic goal to contribute to evidence-based health services.[20] In order to fulfill the potential of technology to significantly impact the quality of health services, our process of HIT design and development integrates foundational principles and strategies from the software development industry and applies them at the appropriate time, while adapting them to the complexities of healthcare roles and workflows with rigorous user testing.[21-26] This paper describes our process as a model that leverages these incredibly useful strategies in a pragmatic way, while preserving methodological integrity and rigor so as to contribute to the evidence base so foundational to academic medicine.
Context: Development of a robust process for digital innovation

Charged with establishing a pipeline for identifying and supporting innovative research and operations projects related digital development at our institution, our group, consisting of both research and HIT innovators, created the medical center’s first lab expressly designed to support our institution's researchers and clinicians in these types of efforts.[27] Our experience in this first year of the lab has revealed the importance of implementing a process for identifying, selecting, specifying and supporting HIT projects at all stages. Throughout all of our projects thus far we have developed, employed and refined our approach, process and practices.[28-30]

Innovating from the inside out

Our experience and resulting model reflects our belief in the importance of building innovation internally, acknowledging that those most likely to identify with the motivations and experiences of our users- those providing and seeking care at our institution- are, in fact, within rather than outside of our organization. Innovation supported from within leverages the valuable "pracademic" lens- a perspective that lies at the intersection of medical practice, healthcare delivery and academia. Innovation work done “in-house” is more likely to be adopted and diffused within an organization since it is the end users themselves building and refining the tools that impact their daily work.[31] While it is common for academic medical centers to bring in external consultants, a robust internal innovation team has the potential to transform an institution’s culture, spurring greater interest in innovation as well as institutional capacity to support it in a more efficient, sustainable way.[27] Given the complexity of healthcare organizations and HIT tools, those within the institution have the institutional knowledge essential to successful innovation; a lens not easily captured by outside consultants.

The aim of this paper is to describe the components of our resulting model, a reflection of our experience establishing internal innovation capacity that 1) supports our medical center’s academic goals, while 2) leveraging strengths and methodologies from current trends in
software development and product management (design thinking, lean, and agile development) and adapting them for efficient, sustainable, user-centered HIT development.

METHODS

Model components

Our integrated process model for user-centered HIT development (Figure 1) is a comprehensive picture of the entire development and testing process from concept generation to widespread deployment of an optimized tool. Leveraging applied qualitative methods, this model incorporates the popular “double diamond” representation of the design process,[9] state of the art software development strategies, a phased approach to workflow analysis, usability testing, and optimization and implementation, and the tangible milestones and products from intake of a new project to ongoing optimization of the HIT tool.

RESULTS

We employ applied design thinking strategies in the pre-deployment phases in which we “discover” during concept generation and workflow analysis (phase 1), followed by further definition of the problem and target of the proposed solution. Solution ideas are refined with user testing feedback and developed throughout the lean-inspired phase 2. An agile approach, including “sprints” to tool development and delivery, occurs throughout phases 3 and 4. The
agile, binned approach to development that agile brings is key to the success of our model; however, the specifics of the sprint are beyond the scope of this paper.

In sum, our process consists of four phases: 1. Tool concept generation and workflow analysis 2. Prototyping with early user testing (including “think aloud” and “near live” methodologies) and iterative tool refinement, 3. Tool development and pilot testing (including “live usability”) and 4. Tool optimization, release and scaling. Phases 1, 2 and 3 are related to pre-deployment tool design, development, workflow integration, and pilot testing, while phase 4 occurs after tool deployment.

Phase 1. Concept generation & workflow analysis

Overview: The concept generation phase features the design thinking/discovery piece of the model. The initial concept generation phase comprises the data gathering, analyses and vetting necessary to build an initial prototype. Beginning with the very first “intake” meeting between the internal innovation and project teams, work in the concept generation phase is geared toward establishing the basic parameters of the tool to specify a “minimum viable product” (MVP) draft of the tool. This tool is what will be used for the initial round of user testing with the assumption that significant iteration will occur in later phases of the process. Components of this phase include: extensive literature review and competitive landscape analysis of similar and related digital products on or coming to market, key informant interviews along with implementation site observation, often culminating in a design workshop aimed at producing a detailed feature list and workflow analysis to inform phase 2 building of the initial tool “MVP” prototype, as well as an initial backlog of features the project team deems as valuable but not key for the initial tool version.

Literature review and competitive landscape analysis: As with typical research endeavors, a comprehensive literature review occurs early in the process to establish the evidence-base necessary to understand what is the current state of the technology in the field,
confirm gaps and use cases the tool could potentially address, and begin to identify where the opportunity exists for innovation for the tool in development. Digital development projects also benefit from a competitive landscape analysis, a review of similar or relevant digital products currently available or in development. The competitive analysis is essential to determining that the tool in development adds value by building upon rather than duplicating the contributions of those already available. It is also a necessary first step in determining potential partners for co-development, should the development project be compatible with such an approach.

Key stakeholder interviews: Concurrent with the literature review and competitive analysis, interviews with key stakeholders are critical in identifying “pain points,” (key needs the tool might address), identifying real world workflow issues (and resulting opportunities for the tool to intervene or facilitate), and confirming potential use cases as identified in the literature. Individual semi-structured interviews with key stakeholders typically last 60 to 90 minutes and are structured to elicit expert and “insider” perspectives on relevant content and workflow factors, while allowing a high degree of flexibility in order to capture unanticipated key issues for consideration in tool development or implementation. Documentation of interviews can range from simple detailed summaries to analyzed verbatim transcripts as is typical of rigorous qualitative research, depending on the academic versus pragmatic goals of the project.

The outcome of the literature review and key stakeholder interviews is a summary document used to drive the development of workshop materials and activities (e.g. draft user profiles, value propositions, draft tool content, workflow maps, etc.) and contribute material for academic manuscript development. Results from these activities may also inform the focus for site observation sessions as described below.

Site observations and workflow analysis: User-centered design requires a deep understanding of workflow and the roles, responsibilities and documents/data related to the tool in development.[32 33] All activities in the concept generation phase inform this understanding
but typically site visits/observations (to correspond with key stakeholder interviews when appropriate) contribute greatly to understanding of key issues or opportunities impacting tool build or implementation decisions. For these reasons, site observations are critical to a comprehensive concept generation phase. Using a structured approach adapted from evidence based frameworks for workflow analysis in healthcare such as the Workflow Elements Model by Unertal et al. and AHRQ’s Workflow Assessment for Health IT Toolkit, qualitative and quantitative data on key elements are gathered throughout phase 1 and collected via usability testing and observations throughout the entire process.[34 35]

Design Thinking Workshop: A design thinking workshop can happen at any point but is often a culmination of the concept generation phase, bringing together a carefully selected combination of stakeholders including potential tool users (ideally 6-8 people) together for an extended, uninterrupted workshop (typically 4-6 hours) with an expert facilitator who guides the group through a carefully selected and sequenced body of activities designed to elicit feedback on content critical to tool development and feature specification, including exercises to create, verify or modify (for example): user personas, opportunity statements development exercises, value propositions, and low fidelity prototypes of tool content or features. The design thinking workshop is key in transitioning the tool development process from the divergent ethos of the concept generation phase to the convergent cadence of prototype development.

The types of activities conducted in a design thinking workshop vary depending on the specific needs and characteristics of an individual project, including complexity and maturity. While one project may only require two hours, other projects may demand an entire day’s worth of activities or multiple workshops throughout initial phases. Having representation from each of the stakeholder groups in the design workshop increases likelihood that the resulting prototype development results in a feasible, widely acceptable tool. A typical design sprint approach in which tool development teams meet intensively for four to five days is rarely if ever feasible in
the context of academic healthcare systems given scheduling and logistical challenges; however maintaining the spirit of the approach and its strategies albeit with a longer time horizon can, from our experience, yield similar benefits.[36]

Types of design thinking workshop activities: Workshop activities are designed to gather, explore and/or refine information needed for digital tool development related to specifying: (1) who is the target user, (2) why they would use the tool, (2) the context in which they will use it, and (4) how the project team will gauge success of the tool. From work done in the discovery phase prior to the workshop, the project team begins to develop clarity on these specifications; this includes mapping of workflows for the purposes of integrating the new tool and related practices into current workstreams. For digital health service delivery products, a clear understanding of existing and new potential workflows is crucial to the design and implementation of successful tool.[37] The products or “artifacts” of the workshop once consolidated and summarized will provide the foundation necessary for development of an initial prototype in Phase 2. Table 1 examples of workshop activities and their objectives.

Table 1. Examples of design thinking workshop activity types

<table>
<thead>
<tr>
<th>Activity Type</th>
<th>Objective</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunity statement</td>
<td>Identify area in which the proposed digital tool may provide value or have an impact.</td>
<td>In pairs, complete this statement (followed by group discussion), “How might we improve [current process/tool] so that [users] are more successful as determined by [measurable criteria]?”</td>
</tr>
<tr>
<td>Persona development</td>
<td>Create specific fictional users (based on actual user research) that feature key characteristics of anticipated user group(s).</td>
<td>Participants as a large group are provided a persona worksheet for review and subsequently asked to raise and discuss, based on the key features presented in the persona story, how this should impact tool build.</td>
</tr>
</tbody>
</table>
User journey mapping
Examining current or anticipated user experiences over time, including what users are doing, thinking, feeling, and interacting with over time.
Facilitator presents a different user profile to each of three small groups, asking them to make a journey map for that user; Following, each group presents their journey map for discussion and refinement.

Service blueprint
To delineate the roles and responsibilities of actors in the healthcare organization and potentially outside that impact, facilitate or restrict a user journey.
Facilitator presents pre-prepared scenario (end-to-end user journey) to map out organizational and other decisions, activities and influencers.

Lean canvas
An actionable “business” plan to guide product development focused on problems, solutions, key metrics and competitive advantages.
Participants shown Lean Canvas template and led through clarifying exercises regarding 9 concepts and gaps in project maturity.

Opportunity statement exercises are aimed at more clearly delineating facets of current practice that are not meeting needs in order to identify in what way new tools and processes can make measurable impact. In this type of exercise, participants are often divided into pairs or small groups and asked to provide feedback on pre-prepared statements and/or offered the chance to develop new opportunity statements. Report back to the full workshop group then allows for discussion, analysis and prioritization of statements if appropriate.

Taking a user-centered approach to health services digital tool development requires deep understanding of not just who will be using the tool (personas and user profiles) but how and when they might use the tool to derive value. User journey mapping exercises are aimed at examining current or anticipated user experiences over time, including what user groups are doing, thinking, and feeling, and how and with what they are interacting. Insights from key informants and users gathered through interviews and within workshop activities inform the journey map which can be created during the workshop or drafted prior to the workshop with feedback and expansion being the goal of the activity in the workshop. Journey maps are essential to the workflow analysis crucial to building successful HIT tools; this type of exercise
and the “map” it produces provides detailed insights on role responsibilities, documents, and information content necessary for prototype development.

While journey mapping is often referred to as a strategy for learning about the “front stage” user experience, service blueprint exercises are geared toward uncovering the “back stage” and “behind the scenes” organizational factors that mirror and impact those “front stage” user experiences.[38] Service blueprint activities involve the diverse group of workshop participants examining, with the help of the facilitator, scenarios of user journeys to delineate the roles and responsibilities of actors in the healthcare organization and potentially outside that impact what happens along the user journey; particularly the ones that, in their current iteration, restrict what can and cannot be done related to the aspects of user activities and experience of interest.

The Lean Canvas is a business plan template of sorts designed to facilitate a new project’s ability to hone in on key building blocks of strategic development such as: problem definition, solution, users, unique value added and key metrics of success. A lean canvas exercise can be useful at this early stage to examine the maturity of the basic tool idea and identify gaps to be addressed for the project to have the focus and business case needed to drive successful development, implementation and, importantly, sustained adoption.[39 40]

The outcome of Phase 1 is a synthesis document based on the “artifacts” (products of design activities e.g. opportunity statements, personas, journey maps) and other findings from workshop activities. This document will drive the drafting of a prototype tool requirements document to drive prototype development and contribute further to drafting of academic manuscripts.
Phase 2. Prototyping & Iterative Refinement (including early user testing with “think aloud” methodology)

Lean startup and agile approaches to digital product development: As a project transitions to Phase 2, a tool workgroup (a group of 6-8 people pulled from the research team, representative users, key stakeholders, and members of the digital development team) is convened to solidify plans for the initial prototype and make any last tweaks to the tool or the workflow integration plan before the tool build after which the project moves to the iterative refinement phase characterized by rounds of user-testing and tool build and implementation refinement.

In this model, as is typical in a lean startup approach, the initial prototype is refined through a multi-phase, pre-clinical user testing process which serves as a clinical laboratory for building successful workflow-integrated tools with a high likelihood of adoption and adherence. Focused on the space between initial product ideation and actual building of software, lean startup as a strategy contributes a rapid, user-focused approach to idea validation with user testing.[36 41 7842] In the lean approach, ideas generated by users or with the input of key stakeholders in the initial product ideation stage are validated and refined iteratively with multiple rounds of user feedback, often employing prototyping with varying degrees of fidelity. If appropriate, initial user testing can occur with low fidelity (e.g. paper or low resolution wireframes) prototypes to test key assumptions before moving on to more costly and time intensive high fidelity software when the tool team is more confident and committed to features and design elements to include.

Subsequent rounds of multi-disciplinary workgroup sessions are interspersed with usability sessions to iteratively refine the tool, beginning with cycles of "think aloud" usability testing sessions in which users are asked to verbalize all thoughts as they interact with the tool following a carefully scripted series of tasks of interest. The think-aloud approach is particularly well-suited to exploring adoption and implementation issues.[43] Following think aloud, usability
testing transitions to “near live” testing in which users are observed carrying out representative tasks of interest with the tool during simulated clinical encounters.[44-46]

Similar to the use of flight simulators for vetting new designs in the airline industry, usability testing and research is an essential part of HIT development.[47] As in aviation, clinical conditions in healthcare are often stressful and difficult to recreate. The lighter weight processes for innovation in consumer digital development are frequently not sufficient in the high stakes and regulated healthcare environment. In addition, in HIT there is often more than one user group; one technology may need to meet the needs of multiple clinical providers (e.g. physicians, nurses, medical assistants) as well as patients in some instances. For these reasons, the multiple rounds of usability testing in our model reflects the unique nature of HIT versus consumer digital development. While data saturation is a goal, the lean philosophy takes a rapid iterative approach to user testing which values a “good enough” level of feedback to move to the next iteration over conclusive evidence favored in traditional academic research.[45] After the tool build and implementation plan has incorporated user feedback from pre-deployment usability testing, the tool is ready for pilot testing in Phase 3.

Workbook: The outcome of Phase 2 is the culmination of work to date in a “workbook” designed to inform build and implementation of the tool. A workbook contains curated content and artifacts gleaned from the first two phases, and is designed to provide a detailed yet concise picture of the project process, as well as feature and design decisions to date and the work that informs them. This document represents an important moment in the product life cycle when project teams can use the workbook to assess gaps as well as the health and viability of the project before deciding to move on to the resource intensive build phase. Serving as both evidence of the work to date (useful for demonstrating efforts to institutional leadership as well as program officers in the case of grant-funded projects), as well as a “pitch deck” for
Phase 3. Pilot testing (“live usability”)

Phase 3 features pilot testing of the tool combined with “live” usability testing prior to large-scale deployment. Pilot testing in this phase, similarly to typical research pilots, is designed to examine tool impact on workflow, uncover usability issues, and identify educational needs to be considered for inclusion by the tool workgroup before larger scale implementation. Through the gathering and addressing of real world, in situ user feedback from “live” usability testing, the development team increases the likelihood that the final iteration released is likely to be acceptable and usable.[48] While it can be useful at any phase, the time-blocked, binning of work in agile “sprints” where very specific and deliberate allocation of work binned into two-week blocks becomes a key characteristic of the work in phases 3 and 4.

While lean is designed to produce validated use cases and value propositions, agile techniques such as “sprints” in which a time-bound, binned approach to allocating work facilitates flexibility and efficiency, offer strategies to support the likelihood that software will a) be delivered efficiently, and b) contain the key features that satisfy user needs.[49-51] Given the challenging environment healthcare poses to IT development, the lean process incorporates a sustained user-centered approach that is essential.[24] While the promotion of design thinking, prototyping and rapid iteration are increasingly common in the healthcare innovation and HIT literature, coverage of these strategies tends to be superficial and in isolation from the foundational principles of the lean start up and agile methodologies from which they originate.

Phase 4. Tool optimization, release and scaling

Phase 4 focuses on ongoing training and organizational and peer support to continuously improve acceptability and adoption of the tool post deployment. Throughout this phase the tool
workgroup continues to meet as needed to examine and discuss tool utilization and user feedback to determine any further modifications needed to the tool itself or the implementation plan. For example, a tool built by researchers at our institution for delivering pre-appointment digital health assessments to patients features built-in reporting on process metrics which are regularly reviewed by the project team in addition to ongoing user experience research for continuous improvement of tool features, functionality and engagement.

While additional modifications may be made to the tool itself in this later phase, our model prioritizes the role of training and organizational and peer support in successful implementation of a digital tool.[52] Training support may consist of ongoing outreach to assess and meet training needs; Organizational support may include regular contact with site leaders to assess implementation and engage in ongoing optimization to the evolving workflows; Peer support may be facilitated through identification of high volume users of the system and engaging them as implementation champions at their site.

DISCUSSION

A rigorous process for user-centered design and implementation of HIT is critical to supporting digital innovation and contributing to evidence-based medicine. Our experience developing and refining this process through multiple clinical decision support and other HIT projects yields a unique model for design in healthcare that, while particularly well-suited to HIT development, is applicable to non-digital innovation as well. While design thinking and user-centered approaches are referred to with increasing frequency in the academic literature, few explicit models for HIT development exist.[18 53 54] While existing models espouse the importance of design thinking, prototyping and rapid cycles of iterative feedback, fidelity to the principles and practices of lean and agile approaches to digital development from which they came is not evident. [55] Similarly, the crucial role of usability testing both pre- and post- tool deployment is not specified or emphasized. Given the complexities of healthcare roles and workflows,
successful implementation necessitates rigorous usability testing pre- and post-deployment to truly grasp a healthcare user journey. While recognizing the centrality, first and foremost, of the user perspective and experience and deep knowledge and consideration of the ways in which healthcare professionals and patients, as humans, interact with digital tools, this model incorporates strategies that also address the need for digital clinical delivery tools to incorporate the business goals and processes of the academic health system for diffusion and sustainability.

Conclusion

Our model brings together, for the first time, concepts from multiple scientific as well as applied disciplines and filters them through the pracademic lens. A result of experience and reflection, this model is a comprehensive approach to digital tool development and implementation that promotes user-centered design and development, while being uniquely equipped to account for and mediate the challenges and tensions posed by the complex, highly-regulated, and high stakes healthcare environment and the need in academic medicine to be first and foremost evidence-based. The culmination of diverse innovation projects, this process model for user-centered digital development represents a multi-phased, high-fidelity process for making HIT and other types of innovation more creative, flexible, efficient and effective. This model is a critical step in building a rigorous approach to HIT design that incorporates a multi-disciplinary, pragmatic perspective, combined with academic research practices and cutting edge approaches to digital product development to meet the unique needs of healthcare.

Acknowledgements

Authorship: All authors have made substantial contributions to (1) conception and design, acquisition of data and/or analysis/interpretation of data and (2) drafting and/or
critical revisions of the manuscript. All listed authors have approved the final version of the manuscript to be published.

Conflicts of interest: All authors declare that they have no competing interests.

Ethical considerations: This research did not involve human subjects and an IRB approval was not required.
REFERENCES

9. Design Council. Eleven lessons managing design in eleven global brands: A study of the design process. (accessed 5/3/2018) https://urldefense.proofpoint.com/v2/url?u=http-3A__www.webcitation.org_6zICzdz9Z&d=DwIwAw&c=j5oPpO0eBH1iio48DtsedbOBGmuw5jHLjgvtN2r4ehE&r=nlvmNt7iCyT7OM4Cu0tOylhML69rotLV6g7zUooNEg&m=lf1X31_n0TER7McbUN8UUKNsyAKQ4U6K__GADjar4g&s=4JeKTBiZrMqRsLfEPBi3w4GvibqVWVOgmkYNrmcviql&e

27. Mann D. Fostering digital innovation between research and clinical operations. Society for Behavioral Medicine Anual Meeting; 2018 April 13, 2018; New Orleans, LA.

35. AHRQ. Workflow Assessment for Health IT Toolkit. Agency for Healthcare Research and Quality. 2016. https://urldefense.proofpoint.com/v2/url?u=http-3A__www.webcitation.org_6zICSeSd1&d=DwIDAw&c=j5oPpO0eBH1ii48DtsedbOBGmuw5iHLij vtN2r4ehE&r=nlvmNt7IcYT70M4Cu0TyylhML69roTL6gl2UuoNEg&m=yUBAQeWut2jv- l4wYd9QgBG0zCXY3tDRh3l554MxVbc&ss=-_w7TB3DUcqVdMJ1Fv86F-- j2Pbqm7uzDBf46PS2ixkA&e

37. Kushniruk A, Borycki E, Kuwata S, Kannry J. Predicting changes in workflow resulting from healthcare information systems: ensuring the safety of healthcare. Healthc Q 2006;9 Spec No:114-8

40. Maurya A. Running Lean: Iterate from a Plan A to a plan that works: O'Reilly.

46. Borycki E, Kushniruk A. Use of Clinical simulations to evaluate the impact of health information systems an ubiquitous computing devices and software upon healthcare work In: Mohammed S, Fiaidhi J, eds. Ubiquitous Health and Medical Informatics: The Ubiquity 2.0 Trend and Beyond. Hershey, Pennsylvania: IGI Global, 2010:552-73.

