Research Protocol

Developing a mobile app to support linkage to HIV/STI testing and PrEP for young men who have sex with men: LYNX pilot study protocol (ATN 140)

Albert Liu, MD, MPH1,2, Kenneth Coleman, MPH1, Kelly Bojan, DNP3, Pedro Alonso Serrano2, Temitope Oyedele, MD3, Amayvis Garcia, Elizabeth Enriquez-Bruce, MD, Patricia Emmanuel, MD3, Patrick Sullivan, DVM, PhD,5 Lisa Hightow-Weidman, MD, MPH,6 Susan Buchbinder, MD1,2, Hyman Scott, MD, MPH1,2

1Bridge HIV, San Francisco Department of Public Health, San Francisco, CA, United States

2Department of Medicine, University of California, San Francisco, San Francisco, CA, United States

3John H. Stroger Jr. Hospital/The Ruth M. Rothstein CORE Center, Chicago, IL, United States

4University of South Florida, Tampa, Tampa, FL, United States

5Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States

6Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States

Corresponding Author:

Albert Liu, MD, MPH
Clinical Research Director
Bridge HIV, San Francisco Department of Public Health
25 Van Ness Avenue, Suite 100
San Francisco, CA 94102
P: 415-437-7408 | F: 415-431-7029 | E: albert.liu@sfdph.org
ABSTRACT

Background: Young men who have sex with men (YMSM) in the US have amongst the highest HIV/sexually transmitted infections (STIs) incidence and the lowest uptake of HIV/STI testing and pre-exposure prophylaxis (PrEP). Nearly universal mobile phone ownership among youth provides an opportunity to leverage mobile health applications (app) to increase HIV/STI testing and PrEP uptake among YMSM.

Objective: The goals of this project are to develop and refine LYNX, a novel mobile app to support linkage to HIV/STIs and PrEP services among YMSM in the US, and to evaluate the acceptability and feasibility of LYNX in a pilot randomized controlled trial (RCT).

Methods: This research protocol will be conducted in 3 phases: an iterative development phase with a series of 3 focus groups among 20 YMSM to refine the LYNX app; an open technical pilot among 15 YMSM to optimize usability of the app; and then a 6-month pilot RCT among 60 HIV-uninfected YMSM at risk for HIV acquisition. Developed using the Information, Motivation, and Behavioral Skills (IMB) theoretical model, the LYNX app includes an electronic diary to track sexual behaviors (information), a personalized risk score to promote accurate risk perception (information/motivation), testing reminders linked to HIV risk score (motivation/behavioral skills), and access to home-based HIV/STI testing options and geospatial (GPS)-based HIV/STI testing care sites (behavioral skills). Feasibility and acceptability will be assessed through app analytics of usage patterns and acceptability scales administered via computer-assisted self-interview (CASI) at 3 and 6 months. We will also evaluate preliminary efficacy by comparing the proportion of YMSM who test at least once during the 6-month pilot, and proportion who successfully link to a PrEP provider, in the intervention versus control groups.

Results: Formative work is currently underway. The LYNX pilot RCT will begin enrollment in July 2018, with study results available in 2019.

Conclusions: The LYNX app is one of the first mobile apps designed to increase HIV/STI testing and PrEP uptake among YMSM. As low-perceived risk is a barrier to HIV/STI testing and PrEP use among youth, the personalized risk assessment and interactive sexual diary in LYNX could assist YMSM in better understanding their HIV risk and providing motivation to test for HIV/STIs and initiate PrEP. Coupled with community-based recruitment, this novel mobile app has great potential to reach and engage YMSM not currently involved in care, and increase rates of HIV/STI testing and PrEP uptake in this vulnerable population.

Trial Registration: ClinicalTrials.gov (NCT03177512); University of North Carolina Institutional Review Board (IRB# 17-0170).
Introduction

The HIV epidemic has been worsening among young MSM (YMSM) in the United States (US). YMSM aged 13-24 had the greatest increase (26%) in diagnosed HIV infections from 2008-2011[1], and infection rates have remained high through 2014. YMSM accounted for over one-quarter of new HIV infections among MSM and over three-quarters of new HIV diagnoses among youth aged 13-24 in 2015. [2] YMSM of color are disproportionately affected by HIV, with Black YMSM experiencing the largest increase in new infections during this period. In 2015, Black and Latino MSM accounted for 55% and 24% of infections among YMSM, respectively. There is urgent need for ensuring access to effective HIV prevention approaches in this vulnerable population.

HIV testing is critical for ensuring access to timely treatment and preventing ongoing transmission for HIV-infected YMSM, and for linkage to effective preventive tools for those who test HIV-negative. Although the Centers for Disease Control and Prevention (CDC) recommends at least yearly HIV testing for MSM,[3] in a recent national online survey, only 53% of YMSM reported testing in the past year, and 33% had never tested in their lifetime.[4] Furthermore, 44% of HIV-infected youth in the US were unaware of their diagnosis, compared with 13% for the general population.[5] Reasons for not testing include low perceived risk (42%), fear of testing positive (20%), and not having time to test (11%). [6] Bacterial sexually transmitted infections (STIs) have been identified as potential drivers of HIV infection.[7-17] Despite YMSM having the highest annual STI rate among any age group,[18] STI screening rates are low, with less than half of YMSM reporting STI testing in the last year.[6, 19-26] Low perceived risk, lack of symptoms, and lower access to healthcare providers have been identified as barriers to HIV/STI testing.[27, 28]

Pre-Exposure Prophylaxis (PrEP) has demonstrated high efficacy, but uptake has been low among YMSM. The iPrEx trial, in which half the participants were under 25, demonstrated an estimated >90% PrEP efficacy among MSM with detectable drug levels in blood.[29, 30] Despite these results, there has
been a myriad of challenges to increasing PrEP uptake in the US, including low awareness, concerns about side effects, low risk perception, and PrEP stigma. According to national prescription data, youth under 24 are the least likely to initiate PrEP, with only 9% of PrEP initiations in 2015 occurring in this age group. In a recent national survey, only half of YMSM aged 15-24 had heard of PrEP, and 1.7% had ever used PrEP. Demonstration projects also highlight challenges with PrEP uptake. In the US Demo Project of 550 MSM, only 20% were age 25 or under, and PrEP uptake was lower among younger, non-white, and less educated persons. Self-perceived risk was low among those declining PrEP, despite high rates of condomless sex and STIs in this group. In the Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN) 110 study of YMSM aged 18-22, PrEP uptake was only 16%, and PrEP adherence was lower among Black YMSM and declined overall during follow-up, particularly with less frequent visits. Taken together, these data point to deficits in self-perceived risk that may result in low PrEP uptake, especially among YMSM of color, and the importance of engaging youth when offering and delivering PrEP.

Mobile technologies have enormous potential to reach and engage YMSM in HIV prevention. Mobile phones have nearly reached saturation among youth, making mobile technology a particularly promising tool to reach this population that has been traditionally hard to reach through clinical services. Smart phone adoption is particularly high among young adults, with approximately 86% of those under age 30 owning a smart phone. Youth are more likely to use their mobile devices for more activities, such as downloading mobile apps, Internet access, social networking, and accessing health information. The expansion of smart phones’ reach has increased the possibilities of dynamic, mobile phone based HIV prevention interventions.

Theoretical framework for intervention. Using the Information-Motivation-Behavior Skills (IMB) model, we have developed a highly interactive mobile app to promote accurate risk perception and increase HIV/STI testing and linkage to care among YMSM. Key components of the LYNX app will
address IMB needs for both increasing HIV/STI testing frequency and PrEP uptake, and are shown in Table 1. The Sexual Health Promotion (Sex Pro) tool is an innovative web-based app (mysexpro.org) that provides a personalized HIV risk score, based on data from several large MSM cohort studies.[13, 17, 46, 47] This score is displayed on a "speedometer" (1-20 scale), with a higher score representing a higher level of protection, and was highly predictive of HIV risk among Black MSM in HPTN 061, with all HIV infections occurring in individuals with a score below 16.[48] YMSM found it particularly useful and informative, but preferred a mobile app to the web app format. Sex Pro has been developed into a mobile app, with additional features incorporated, including a sex diary to facilitate accurate data collection; HIV/STI testing information and reminders; access to a home HIV/STI testing kit ordered through a link from the app and delivered to a location of the user’s choosing (e.g. home or subject recruitment venue [SRV]); and access to geospatial (GPS)-based testing site and linkage to HIV care information.

Table 1: LYNX components to increase HIV/STI testing and PrEP uptake, according to the IMB model

<table>
<thead>
<tr>
<th>Goal</th>
<th>Information</th>
<th>Motivation</th>
<th>Behavioral Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase HIV/STI testing</td>
<td>Personalized HIV risk assessment Sexual history diary and partner tracking</td>
<td>Testing reminders linked to HIV risk score. HIV/STI testing diary and personalized HIV risk score</td>
<td>● Home-based HIV/STI testing options and instructions ● GPS-based testing site and linkage to HIV care information</td>
</tr>
</tbody>
</table>

Aims and Objectives. This study is part of the UNC/Emory Center for Innovative Technology (iTech), which has the overall goal to develop innovative technology-focused interventions addressing the HIV prevention and care continuum for youth. [Hightow-Weidman et al., Engaged and Empowered, submitted to this issue] In this protocol, we will first refine the LYNX app through a series of focus groups and optimize usability through a small technical pilot. We will then evaluate the acceptability and feasibility of the LYNX app in a pilot randomized controlled trial (RCT) among YMSM at risk for HIV
acquisition in the US. If found to be feasible and acceptable, LYNX will be tested for efficacy in increasing HIV testing and PrEP linkage in a separate efficacy RCT study as part of the iTech.

METHODS

Trial Registration, Ethics, Consent and Institutional Board Approval

This study has been reviewed and approved by the University of North Carolina Institutional Review Board (IRB# 17-0170). Reliance agreements were established for each SRV. A Certificate of Confidentiality has been obtained from the National Institute of Child Health and Human Development and a waiver of parental consent/assent will be obtained for participants who are 15-17 years old. The study is also registered on ClinicalTrials.gov (NCT03177512)

Design

This research protocol will be conducted in 3 phases: an iterative development phase with a series of 3 focus groups among up to 20 YMSM to refine the LYNX app; an open technical pilot among 15 YMSM to optimize usability of the app; and then a 6-month pilot RCT among 60 HIV-uninfected YMSM at risk for HIV acquisition, in which participants are randomized 2:1 to receive the LYNX app vs. standard of care.

Data in the formative phase will include videotaped focus groups, and data from the technical pilot will include an online qualitative exit interview, a computer-assisted self-interview (CASI), and app analytics (including login times, clicks on different app pages, and completion of different app activities). For the pilot RCT, feasibility and acceptability will be assessed through app analytics of usage patterns and acceptability scales administered via computer-assisted self-interviews (CASIs). We will also evaluate preliminary efficacy by comparing the proportion of YMSM who test at least once during the 6-month pilot, and the proportion who successfully link to a PrEP provider, in the intervention versus control groups. All phases of this study take place in two diverse iTech SRV cities: Chicago, IL (study site CORE Center), and Tampa, FL (study site University of South Florida).
Participants

(Eligibility criteria with a "*" are only for participants in the technical pilot and pilot RCT.) Eligible participants are cis-gender men who 1) are aged 15-24; 2) have not had an HIV test in the past 6 months*; 3) self-report being HIV-uninfected or HIV status-unknown at screening; 4) own an iOS or Android mobile phone; 5) are able to understand, read, and speak English; 5) are not taking PrEP*; 6) have self-reported evidence of being at-risk for HIV acquisition, including at least one of the following in the past 6 months: a) ≥1 episode of condomless anal sex with an HIV-positive or unknown HIV status male or transfemale partner; b) anal sex with ≥2 male and/or transfemale partners; c) exchange of money, gifts, shelter, or drugs for anal sex with a male or transfemale partner; d) sex with a male or transfemale partner and having had an STI; e) sexual partner of an HIV-positive man or transfemale with whom condoms were not consistently used; or f) if 15-18 years old, report of any anal sex with a male or transfemale partner; 7) have not received experimental HIV vaccine product with evidence of vaccine-induced seropositivity*; 8) not currently enrolled in another HIV intervention study; and 9) do not have any health or social condition that in the judgment of the investigator would make participation unsafe, complicate interpretation of study outcome data, or interfere with achieving study objectives.

Recruitment

Participants will be recruited through a variety of strategies, including online and social media strategies (e.g., Craigslist, social networking ads, and gay networking mobile apps); distributing posters, flyers, and palm cards about the study; and direct outreach at local venues frequented by YMSM, including community-based organizations, schools, bars, social clubs, beauty parlors, sports venues, churches, health fairs, balls, and other community events. Clinic-based recruitment may include reviewing medical charts of existing patients for potential eligibility, or referrals from other providers in the clinic.
Potential subjects who are recruited or contact the SRV about the study will be followed up and assessed by trained SRV study staff at participating sites by phone, email, or in person. They will be informed of the nature of the study, the information to be collected, and the evaluations and assessments that are involved. Those who express interest in the study will be required to provide signed informed assent/consent and have eligibility criteria confirmed by research staff before enrolling into the study.

Everyone who is contacted for recruitment, has his or her medical chart reviewed to assess potential eligibility, is referred to the study by a provider, or is consented for study participation, will be referred to an online eligibility screener to assess eligibility. Individuals who do not consent to participate will be asked if they are willing to provide their reason for declining participation. Individuals assessed as ineligible for enrollment will have the reason(s) for ineligibility recorded.

Description of app intervention

The LYNX app has been developed by Apt Mobility (www.aptmobility.com), the technical team who created the original version of the Sex Pro app and has extensive experience creating health-related apps. As shown in Figure 1, the LYNX app was developed using the IMB framework to increase HIV/STI testing and PrEP uptake among YMSM. Upon downloading the LYNX app on to a personal device/phone, the user completes an onboarding process. This process includes creating login credentials and setting a password to access the password-protected app, entering basic demographic data, customizing user settings (e.g. date, time, content of testing and reminders to use Sex Pro, and configuring "rate your partner" categories), and completing the baseline Sex Pro score. Participants are then taken to the LYNX landing screen with icons for key functions of the app, including HIV/STI testing and PrEP resources (Information); Sex Pro and earned badges (developed to integrate "gamification" into the app) for completing in-app activities (e.g. sexual diary entries, ordering an HIV/STI home testing kit) (Motivation); and HIV/STI testing instructions with access to home testing options (Behavioral Skills). Preliminary
screenshots of the LYNX app prototype are shown in Appendix 1. The LYNX app will be developed for both iOS and Android platforms, the two mobile phone platforms that together make up more than 97% of smart phones in the US.[49]

Formative phase focus groups

To refine the LYNX app, we will use an iterative development design using focus groups (FG) with 8-10 YMSM at each SRV, followed over 3-6 months (up to 3 iterations). Using a discussion guide, we will demonstrate the app and wireframes (screenshots) of new components and elicit perspectives in content, layout, usability, and functionality. The IMB domains described above will guide the development process. We will also elicit feedback on the home HIV/STI testing kit and instructions, and investigate preferences for documentation of clinic or home-based HIV/STI testing (release of medical records, upload test results via secure website and through the app). Participants will be asked to download and test iterative versions of the app for two weeks prior to the next FG where we will gather feedback on the usability, design, and potential impact of the app. Study staff will use an onboarding document to walk participants through the download procedures and use of the app. FGs may be conducted in person, or via video conferencing.

All FGs will be video-recorded for transcription and analysis. The goal of the analysis is to identify barriers and facilitators to app usability. If available, members of the app development team will observe the focus groups via video conference in case they need more clarification of specific suggestions for improving the app. Analysis of the FG will commence immediately after participants leave, in the form of a discussion of salient themes and suggestions. The team will then prioritize changes to the app for the next iteration to be tested and discussed in the next round of focus group discussions. If further transcription is necessary, selected segments of the video and audio interview data will be transcribed.

Technical pilot
After revisions to the LYNX app are completed based on the formative phase, we will conduct a 2 month, single-arm, pilot study among 12-15 YMSM across two iTech SRV cities to optimize the technical performance and functionality of LYNX. YMSM who participated in the formative phase may participate in the technical pilot. At an in-person enrollment visit, YMSM will download the LYNX app and answer an online computer assisted self-interview (CASI) questionnaire on sociodemographics, use of technology, and risk behaviors. Study staff will use an onboarding document to walk participants through the download procedures and use of the app. Participants will then be encouraged to use all app components over the next two months, including ordering and using the HIV/STI test kit at least once during the technical pilot.

Upon completion of the technical pilot, all participants will complete an online exit interview with qualitative-trained study staff to provide feedback on functionality, technical performance, errors and bugs encountered, overall experiences using the app, feasibility and acceptability of methods to confirm HIV testing results (e.g. upload results via a secure website), and feedback for further refinement. Online interviews will be conducted via HIPAA-compliant, video chat application (Vsee) that provides strong security components. We will also assess youth satisfaction with the app using the System Usability Scale, a validated assessment tool assessing various domains of the app with demonstrated high internal consistency across a number of studies.[50] Participants will be emailed a link to complete a computer assisted self-interview (CASI) to assess these measures. All exit interviews will be audio and video-recorded and transcribed for analysis by the iTech Analytic Core (AC).

Pilot RCT

After the LYNX app is refined and optimized through the findings from the formative work and technical pilot, we will evaluate the feasibility, acceptability, and preliminary impact of LYNX through a pilot RCT with 60 HIV-uninfected YMSM at risk for HIV acquisition.
Randomization: Participants who express interest in using LYNX, meet eligibility criteria, provide informed consent, and complete a baseline assessment will be eligible for enrollment and randomization. After successful enrollment into the study, subjects will be randomized 2:1 into either the LYNX intervention arm (N=40) or control arm (N=20). The 2:1 allocation will allow us to efficiently gather additional data on app utilization. Randomization will be stratified by site and based on a pre-generated list created by the lead iTech AC statistician, with random blocks of size three or six.[51] After assent/consent and baseline survey completion, the participant will be randomized (assigned to the next available random allocation).

LYNX Intervention Condition: Individuals who receive LYNX will be given brief instructions on the purpose of the app, how to access it and an overview of how to use it. Participants will be encouraged to explore all components of the app and use it routinely.

Standard of Care Condition: Following screening, participants in both conditions will receive standard of care prevention material consisting of online provision of information regarding recommendations for HIV-testing and referrals to local HIV testing sites and prevention services.

Intervention: Study staff will assist participants in downloading the LYNX mobile app, provide instruction on its use, and help set up reminders to input sex diary entries. Study staff will use an onboarding document to walk participants through the download procedures and use of the app. These reminders will be personalized by the user for day, time, and message content at the first visit, and can subsequently be updated by participants if desired. Participants will be encouraged to explore and use other components of the app (including the Sex Pro score, PrEP videos, and geo-location features). Users will receive quarterly HIV/STI testing reminders using the mobile device notification feature. For confidentiality purposes, reminder notifications are nonspecific, but inside the app the participant is linked to a customizable reminder. Reminders include two options for testing: (1) the ability to order a home HIV/STI testing kit to be mailed to a location of their choosing (e.g. home or the SRV) free of charge, or (2) a geo-located map of the closest HIV/STI testing sites.
Control arm: Participants randomized to the control condition will be instructed to access HIV/STI testing at existing sites in the community. They will be provided with a written list of these testing sites, along with an informational brochure about PrEP. All participants will be provided access to Sex Pro (risk assessment tool that is part of LYNX and will be made available online) after completion of the study.

Follow-up visits: All enrolled participants will be followed for 24 weeks. After enrollment, all follow-up visits will occur online, with SMS reminders and phone follow-up conducted as needed to ensure completion of study procedures. Participants will complete an online CASI at 12 and 24 weeks and receive a stipend for completion of procedures at each visit. Visit windows will be 14 days before/after the target date.

At the completion of the study, up to 20 participants randomized to the LYNX arm will be selected for participation in an exit in-depth interview. The purpose of the exit interviews is to elicit additional feedback on their experiences using the app, any technical difficulties encountered, and how the app could be further improved. Participants will be selected for interview using purposive sampling based on level of engagement with the app, whether participants completed HIV/STI testing and/or initiated PrEP during the study, and to achieve diversity based on sociodemographics (e.g. age, race/ethnicity). By purposively sampling certain participants for the exit interviews, the goal is to select “information-rich cases from which one can learn a great deal about issues of central importance to the purpose of the research” [52]. All interviews will be conducted via VSee, and audio and video recorded for transcription and analysis.

Outcomes

Primary and secondary outcomes and moderating variables for the pilot RCT are shown in Table 2.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Data source</th>
<th>Description/Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcomes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Outcomes and measures for LYNX
<table>
<thead>
<tr>
<th>Acceptability</th>
<th>CASI</th>
<th>System Usability Scale[72]; Intervention Acceptability Scale[73], acceptability of app components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasibility</td>
<td>App</td>
<td>Frequency of app logins and use of different components of LYNX</td>
</tr>
</tbody>
</table>

Secondary outcomes

<table>
<thead>
<tr>
<th>HIV testing frequency</th>
<th>CASI,EP, MR</th>
<th># HIV tests during study</th>
</tr>
</thead>
<tbody>
<tr>
<td>STI testing frequency</td>
<td>CASI,EP, MR</td>
<td># STI tests during study</td>
</tr>
<tr>
<td>HIV testing knowledge, attitudes, behaviors</td>
<td>CASI</td>
<td>National HIV Behavioral Surveillance MSM-4</td>
</tr>
<tr>
<td>PrEP knowledge and attitudes; PrEP willingness</td>
<td>CASI</td>
<td>PrEP awareness and willingness scales</td>
</tr>
<tr>
<td>PrEP linkage</td>
<td>CASI, MR</td>
<td>HIV-negative cascade measures</td>
</tr>
<tr>
<td>Social impacts</td>
<td>CASI</td>
<td>Social benefits and harms of using app</td>
</tr>
</tbody>
</table>

Model constructs

| **IMB (information, motivation, behavioral skills)** | CASI | Adapted scales based on content of app[74, 75] |

Covariates (based on Eco-social model)[54-57]

Individual

<table>
<thead>
<tr>
<th>Demographics, socioeconomic position</th>
<th>CASI</th>
<th>Age, race/ethnicity, gender identity, sexual identity, student status, education, income, family structure, employment, insurance status, food insecurity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexual Behavior (# sex partners, condom use, partner selection)</td>
<td>CASI</td>
<td>Numbers and types of partners, HIV-status of partners, sexual position, condom use,</td>
</tr>
<tr>
<td>Drug use behavior (i.e., alcohol, cocaine, meth)</td>
<td>CASI</td>
<td>ASSIST[76], AUDIT-C[77]</td>
</tr>
<tr>
<td>Self-efficacy</td>
<td>CASI</td>
<td>HIV testing [78], PrEP use[79], condom use[80]</td>
</tr>
<tr>
<td>Mental health (depression, anxiety)</td>
<td>CASI</td>
<td>Generalized Anxiety Disorder 7-item scale, Patient Health Questionnaire</td>
</tr>
<tr>
<td>Perceived risk of HIV infection</td>
<td>CASI</td>
<td>Perceived risk of HIV scale[81]</td>
</tr>
<tr>
<td>Trauma and abuse</td>
<td>CASI</td>
<td>SPAN[82]</td>
</tr>
</tbody>
</table>

Social/Sexual Network

<table>
<thead>
<tr>
<th>Social support</th>
<th>CASI</th>
<th>PROMIS [83]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer norms for condom use</td>
<td>CASI</td>
<td></td>
</tr>
</tbody>
</table>

Structural

<table>
<thead>
<tr>
<th>SRV/City</th>
<th>CRF</th>
<th>Geographic location of study participant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to health care</td>
<td>CASI</td>
<td>Barriers, frequency of seeing a provider, locations, comfortability in discussing sex with provider</td>
</tr>
<tr>
<td>Incarceration history</td>
<td>CASI</td>
<td>Ever and recent history</td>
</tr>
<tr>
<td>Structural discrimination</td>
<td>CASI</td>
<td>Everyday Discrimination Scale [84], racism, sexual minority stress [85], medical mistrust</td>
</tr>
<tr>
<td>Stigma</td>
<td>CASI</td>
<td>PrEP-related, sexuality-related</td>
</tr>
</tbody>
</table>

Other covariates

<table>
<thead>
<tr>
<th>Mobile phone and technology use</th>
<th>CASI</th>
<th>Device types, operating system, and phone plan, sharing of devices, internet use and frequency, use of social networking sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile App use over study period</td>
<td>App analytics</td>
<td>Login attempts, HIV testing and PrEP use, proportion complete HIV testing plan, proportion requesting HIV/STI home test kits</td>
</tr>
</tbody>
</table>

CASI= Computer assisted self-interview; EP=electronic picture; MR= Medical record confirmation CRF=case report form
The primary acceptability outcome will be measured by the System Usability Scale (SUS), a ten-item, 5-point Likert scale giving an overall view of usability. The SUS is technology-independent and provides a global measure of system satisfaction and sub-scales of usability and learnability [50]. A score of >50 (out of 100) indicates the app is acceptable.[53] We will also assess interest in future use of LYNX at study completion. For feasibility, we will assess frequency of logins and use of various components of LYNX, based on app analytics. If >50% of participants open the app at least once after the initial enrollment visit, it will be considered feasible. We will also assess the proportion of YMSM who complete the personalized risk assessment, a key component of the app, at least once, and the number of HIV/STI home testing kits requested and completed. As a secondary outcome, we will evaluate the preliminary efficacy of LYNX in increasing HIV/STI testing and PrEP care linkage. For HIV testing, we will evaluate the proportion who complete at least 1 HIV test during the 6 months of follow-up. Self-reported HIV/STI testing via CASI will be confirmed by methods that are finalized during the formative phase (e.g. medical record review, upload test results via secure website). For PrEP linkage, we will evaluate 1) the proportion of participants reporting interest in PrEP uptake during follow-up using the question “How interested are you in taking PrEP?” with response options “not at all interested, a little interested, somewhat interested, very interested, and extremely interested” compared to baseline; 2) the proportion making and attending a clinic appointment for PrEP evaluation; and 3) the proportion who receive a prescription for PrEP, and the proportion who pick up PrEP medication from the pharmacy. We will request participants to sign medical release forms for the release of their HIV/STI testing results and records regarding PrEP initiation. We will also measure sexual behaviors at each quarterly follow-up visit, including numbers of partners and types of sexual behaviors, by HIV serostatus and position (insertive, receptive) in the past 3 months. Finally, we will assess IMB model constructs including HIV/STI testing and PrEP knowledge, attitudes, motivations, and behavioral skills related to HIV/STI testing and PrEP uptake. Given the importance of moderating contextual factors which may influence uptake of
prevention strategies in YMSM, we will use the eco-social theoretical model which links individual, social, and structural factors (i.e., socio-economic position, social networks, and stigma) across a hierarchical framework to explore these factors as they relate to HIV/STI testing and PrEP uptake among YMSM.\cite{54-57} Process measures including recruitment, consent, dropout, and missed visit rates will also be assessed.

Statistical Analysis

Response rates to follow-up surveys will be tabulated by recruitment venue and respondent characteristics to help understand potential sources of bias. We will characterize the study population using descriptive statistics and compare the intervention and control groups at baseline using t-, Wilcoxon, and chi-square tests. Point estimates for mean SUS score ≥50 and for proportion accessing the app >0.50 will be considered the minimum criteria for acceptability and feasibility, consistent with industry standards \cite{50}.

A secondary feasibility outcome will be achieved if ≥50% of participants who open the app complete their personalized risk score at least once. For evaluation of preliminary efficacy, the intervention effect of LYNX on HIV/STI testing (at least once in past 6 months) and PrEP uptake will be evaluated using generalized estimating equations logistic models. Means will be estimated with margins of sampling error of 0.28-0.36 standard deviations and 8-16 percentage points for continuous and binary outcomes, respectively.

With 60 participants randomized 2:1 to intervention:control, and 10-20% attrition, we will have 80% power to detect 19-30 percentage point increases in HIV testing and 26-38 point increases in PrEP uptake, depending on rates in controls. The lack of precision and large minimum detectable effects, typical of pilot studies, will entail careful interpretation of study results in the light of overall patterns, plausibility, and findings from other mHealth studies. In the event of failure of randomization, post-hoc analyses may be conducted to standardize results for factors on which randomization failed.
Incentives

Participants receive incentives consistent with local standards for completing each study visit. This includes the baseline, 3 month, and 6 month follow-up visits.

Results

This study will begin enrolling in July 2018, and study results will be available in 2019.

Discussion

The LYNX pilot RCT will evaluate the feasibility and acceptability of one of the first mobile apps designed to increase HIV testing and PrEP uptake among YMSM. A recent review of 285 HIV mobile apps revealed that only 8% specifically addressed MSM, and none dealt with PrEP.[58] Furthermore, most were developed by non-academic, non-public health developers, which may be less credible than apps created by university or health department sponsors.[59] LYNX was developed by a multidisciplinary team of public health researchers, HIV physicians, behavioral specialists, and app developers, with input from YMSM at all stages of development. While most prior mHealth prevention interventions have focused on behavioral risk reduction alone, LYNX will incorporate components to increase HIV/STI testing and linkage to treatment and prevention services, including PrEP, and will be specifically tailored for use in YMSM.

The LYNX app will use a personalized risk assessment to assist YMSM in evaluating their risk for HIV. Internet-based personalized decision support tools have been used successfully to assist users with behavior change in several diseases including heavy alcohol use, hyperlipidemia, and obesity.[60-67] Currently no mHealth interventions integrate personalized HIV risk assessment, appeal to YMSM, and incorporate HIV/STI testing and resources to increase PrEP uptake.[68-70] A highly engaging risk assessment tool could assist YMSM better understand their HIV risk, provide motivation to test for HIV/STIs, and help determine when to take PrEP.
A technology-based HIV prevention app has great potential in scaling up HIV/STI testing and PrEP use among YMSM. Modeling studies in MSM suggest that substantial coverage of HIV prevention services is needed to reduce population level incidence,[71] yet uptake of these services have been limited in youth. With the high penetration of smartphones among youth, LYNX has great potential to reach large numbers of high-risk YMSM who may not access medical care or traditional testing sites, at marginal incremental costs. If found to be feasible and acceptable in this pilot study, the LYNX app will be evaluated in a head-to-head comparison with the MyChoices app [Biello et al., ATN 141, submitted to this issue] in the COMPARE RCT. If effective, these apps could facilitate nationwide scale-up of HIV/STI testing and PrEP use among YMSM.

Acknowledgements

The authors would like to thank Adi Ferrara, MS, ELS, for help in the preparation of this manuscript.
References

49. Statista. Subscriber share held by smartphone operating systems in the United States from January 2012 to June 2017. 2017 [12/26/2017]; Available from:

