Evaluation of Interactive Visual Displays for Interpreting the Results of Clinical Trials

Jiantao Bian¹, MS; Charlene Weir¹,², PhD, RN; Prasad Unni¹,³, MD, MS; Damian Borbolla¹, MD, MS; Thomas Reese¹, PharmD; Yik-Ki Jacob Wan¹, BS; Guilherme Del Fiol¹,* MD, PhD

¹Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA.
²George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
³Intelligent Medical Objects, Chicago, Illinois, USA

*Corresponding Author:
Guilherme Del Fiol, MD, PhD
Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA.
Email: guilherme.delfiol@utah.edu.

ABSTRACT

Background: At the point of care, evidence from randomized controlled trials (RCTs) is underutilized in helping clinicians meet their information needs.
Objective: To design interactive visual displays to help clinicians interpret and compare the results of relevant RCTs for the management of a specific patient; and to conduct a formative evaluation with physicians comparing interactive visual versus narrative displays.

Methods: We followed a user-centered and iterative design process succeeded by development of information display prototypes as a Web-based application. We then used a within-subjects design with 20 participants (8 attendings and 12 residents) to evaluate the usability and problem-solving impact of the information displays. We compared subjects' perceptions of the interactive visual displays versus narrative abstracts.

Results: The resulting interactive visual displays present RCT results side-by-side according to the PICO (Population, Intervention, Comparison, and Outcome) framework. Study participants completed 19 usability tasks in 3 to 11 seconds with a success rate of 78% to 100%. Participants favored the interactive visual displays over narrative abstracts according to perceived efficiency, effectiveness, effort, user experience and preference (all $P < .001$).

Conclusion: When interpreting and applying RCT findings to case vignettes, physicians preferred interactive graphical and PICO-framework-based information displays that enable direct comparison of the results from multiple RCTs than the traditional narrative and study-centered format. Future studies should investigate the use of interactive visual displays to support clinical decision making in care settings and its effect on clinician and patient outcomes.

Keywords: Clinical decision-making, clinician information needs, information display, information foraging theory, information seeking behavior

Introduction
At the point of care, clinicians have many clinical questions that they are unable to answer with the best available evidence [1]. Unanswered questions are missed opportunities to improve patient care decisions and for just-in-time learning [2]. Primary literature resources (e.g., PubMed®) contain answers to most of these questions [3], but their use at the point of care is still
limited due to barriers such as lack of time and significant cognitive effort imposed by the evidence search and interpretation process [4,5].

Abstracts in scientific manuscripts are typically presented according to the well-established background-introduction-methods-results-discussion-conclusion structure [6]. However, this study-centered structure may not be optimal to support clinicians’ patient-centered conceptual model. The average time for clinicians to look up clinical questions on PubMed ranges from 5 minutes to 60 minutes [7]. In addition, clinicians report high levels of dissatisfaction with their information seeking experience [8,9]. Ultimately, clinicians’ challenges in consuming evidence from the primary literature may contribute to slowing the translation of scientific evidence [10].

Few studies have examined optimal methods for displaying the results of clinical research reports. Prior work regarding the primary literature has focused on displaying systematic reviews, investigating different methods of displaying results across studies, such as short summaries [11–13], tables [14–19] and harvest plots [20]. One recent study examined a novel presentation of clinical trial reports that restructured the visualization into several panels (i.e., study purpose, process model and data grid for viewing results, statistical methods and result interpretations). Using this visualization, translational researchers spent less time with same accuracy understanding and interpreting the clinical trials [21]. In general, very few of those studies have used any theory to drive their work.

The purpose of this study was to investigate alternative display approaches to present relevant information from randomized controlled trials (RCTs) to support clinical decision-making. Overall, we hypothesized that interactive visual displays would reduce clinicians’ cognitive workload in interpreting RCTs compared with narrative RCT abstracts. Building on Slager et al.’s exploratory study on static tabular displays [22], we employed information foraging theory [23] and information visualization techniques to design a high-fidelity prototype, with interactive visual displays of RCT results. The information displays were designed to help clinicians rapidly review, synthesize, and compare the results of relevant RCTs for the treatment of a specific patient. In this study, we described the RCT information displays and addressed the following three research questions: 1) Is the interface usable? 2) Is there a difference in perceived efficiency, effort, effectiveness, user experience and preference between interactive visual
displays and narrative abstracts? 3) Do clinicians’ perceived user experience, efficacy, effort and effectiveness predict their intention to use interactive visual displays?

Theoretical framework

The design of the information displays was based upon information foraging theory [23], Shneiderman’s information visualization principles [24], and the PICO (Population, Intervention, Comparison, and Outcome) framework [25].

Information foraging theory was initially proposed for Web designers [26]. Based on an analogy with animals’ foraging, information foraging theory indicates that information seekers use information scent (i.e., cues indicating the existence of easily accessible and relevant information) to select information patches to explore maximizing the value (i.e., perceived utility of the information) to cost (i.e., time and effort required to explore the patch) ratio [23]. Within a certain patch, the concentration of relevant information can be increased through a process called information patch enrichment (e.g., use of filters). Information foraging theory is grounded on the Holling Disc Equation, which equals the ratio of the total net amount of valuable information gained to the sum of the total amount of time spent between-patches and within-patches [27]. Shneiderman proposed an information visualization principle according to which information displays should first provide an information overview, with the ability to zoom and filter, and then retrieve details on demand [24].

RCTs are the highest level evidence in evidence-based medicine [28]. The PICO elements are key components of the CONSORT (Consolidated Standards of Reporting Trials) statement for reporting the quality of RCTs [29]. In addition, the PICO elements have been identified in multiple studies as the critical elements of an RCT [30–32], and are almost ubiquitous within medical journal abstracts [31]. PICO has been reported to be a more effective search input format than the standard PubMed search interface for answering clinical questions [25,33]. More recently, Slager et al found that clinicians favored a PICO-based tabular display over the typical narrative abstracts reported in scientific journals [22].
Methods

Our study had two phases. The first phase was the process of designing and implementing the information displays. The second was an experimental formative evaluation assessing usability and problem-solving impact. The second phase included three stages: 1) usability test of the interactive visual displays; 2) problem solving for two case vignettes comparing narrative abstracts versus interactive visual displays; and 3) post-study questionnaire (Figure 1).

![Figure 1. Visualization of study structure](image)

Phase one: Design of the interactive visual displays

Design overview

We followed a user-centered and iterative design process with feedback from informatics students, clinicians and human factor experts. The study authors (three informatics and human factors specialists and four informatics students; five with clinical background) designed the first several iterations followed by feedback from three independent informatics researchers with clinical background. We started with low-fidelity prototypes that were designed with user interface mockup software (*NinjaMock®*) [34] and free website builder (*Wix®*) [35]. After about 50 design-feedback iterations, the information displays evolved into a high-fidelity interactive prototype: a Web-based application implemented in HTML, CSS, JavaScript and an open-source third party graphic library called *Highcharts®* [36].
Data structure

First, we searched a set of RCTs in PubMed related to three clinical case vignettes that were used in the evaluation phase. Next, we manually extracted data, including PICO elements, from each of the selected RCTs. The following data were extracted from each RCT on a spreadsheet: PMID, journal, publication date, study title, study acronym, population inclusion criteria, population age, study sample size, study country, aim, and main conclusion. For study arms, we extracted the study arm intervention and number of participants. For each study arm, we extracted name and results of all major outcome measures, overall adverse event rate and most common adverse events. Last, we designed an XML schema to represent the RCT data, created XML instances for each RCT, and transformed the XML instances into JavaScript Object Notation (JSON) format for consumption by the application. The RCTs used in the prototype were manually searched and selected as the purpose of the study was to compare the information displays as opposed to search engines. Also, RCT data were manually extracted since the purpose of the study was not to investigate automated methods to extract PICO elements.

Phase two: Formative evaluation comparing narrative abstracts versus interactive visual displays

For formative evaluation, we used a within-subjects experimental design. We tested the usability of the interactive visual displays and compared subjects’ perceptions about narrative abstracts display versus interactive visual displays for clinical problem solving using case vignettes.

Study setting

Formative evaluation sessions were conducted via online meetings using Web meeting software (WebEx®). Participants accessed an instance of the interactive visual displays hosted at the University of Utah Center for High Performance Computing (CHPC) [37]. The URL was shared with participants at the beginning of the evaluation sessions.
Participant recruitment

We recruited 20 participants (8 attending physicians and 12 residents) who had not been previously exposed to the interactive visual displays (Appendix Table A1). Participants were recruited from the Departments of Family Medicine at the University of Utah and Partners Healthcare via announcements that were sent to Departments e-mail lists. Also, we employed the snowball sampling technique asking study participants to promote the study among their colleagues. All participants received a $100 incentive to participate in the study sessions. A previous study with similar design [22] demonstrated that 20 participants are enough to detect a moderate difference between interactive visual displays and narrative display with a power of 0.80.

Information displays evaluation procedure

We randomized participants to the order of presentation of the two tools; and to the vignette-tool assignment. Each session began with a brief introduction about the study and a short one-page PDF tutorial explaining how to use the interactive visual displays. To ensure consistency verbal instructions were read from a pre-defined script for each session.

Each formative evaluation session included three stages: 1) *usability* test of the interactive visual displays; 2) *problem solving* for two case vignettes comparing narrative abstracts versus interactive visual displays; and 3) post-study questionnaire assessing the participant’s perception of the *efficiency*, *effort*, *effectiveness*, *user experience* and *preference* of interactive visual displays versus narrative abstracts. In the first two stages, the participants were asked to share their screens via WebEx, and their screen interactions were recorded for data analysis. In the third stage, participants were asked to stop screen sharing while answering the post-study questionnaire to ensure anonymity and minimize Hawthorne effect. This study was approved by the Institutional Review Board (IRB) of the University of Utah.

Case vignettes and RCTs
We prepared three case vignettes (Table 1), which presented challenges related to patient treatment. The vignettes were obtained from the literature and adapted by clinicians in our team. For each case vignette, we searched for potentially relevant RCTs using PubMed’s Clinical Query treatment filter and a MeSH term that matched the main disease of the case. We manually screened the retrieved articles for RCTs on the diseases of interest and presented the same RCTs in the same order both within PubMed and the interactive visual displays. The supplementary data provide the case vignettes and selected RCTs.

Table 1. Case vignettes used in the formative evaluation.

<table>
<thead>
<tr>
<th>Case Vignette</th>
<th>Stage Used</th>
<th>Complexity *</th>
<th>Designer</th>
<th>Number of studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute coronary syndrome (ACS)</td>
<td>Usability</td>
<td>Easy</td>
<td>Article author (PU)</td>
<td>2</td>
</tr>
<tr>
<td>Rheumatoid arthritis (RA)</td>
<td>Problem solving</td>
<td>Complex</td>
<td>Adapted from [38]</td>
<td>10</td>
</tr>
<tr>
<td>Diabetes mellitus (DM)</td>
<td>Problem solving</td>
<td>Complex</td>
<td>Adapted from [39]</td>
<td>10</td>
</tr>
</tbody>
</table>

* The complexity level of each vignette was determined by the number of factors involved in each treatment case.

Stage one: usability of interactive visual displays

We developed 19 tasks to test the usability of the key information and features provided by interactive visual displays. Most of the tasks required participants to perform an action (e.g., highlight, access, switch). We read the tasks aloud one-by-one to each participant and let them complete the tasks independently without assistance. We measured the time spent and success on each task. We also tape recorded the session and transcribed their comments.

Stage two: problem solving

Participants were told that the rheumatoid arthritis (RA) and diabetes mellitus (DM) cases are relatively complex and that there are multiple reasonable treatment options for each case. We
asked each participant to complete this stage in no more than 10 minutes in order to simulate the
time pressure of a real patient visit [1,40]. We notified participants when there were 3 minutes
and 1 minute left to finish the session. Within each case vignette session, participants could go
back to the vignette description at any time.

For PubMed, participants were given a hyperlink that gave access to a search results page with
the 10 RCTs in PubMed’s default search results display format (Supplement Figure s1). No
washout time was provided between the two case vignettes. At the end of the problem-solving
stage, we asked each participant to provide a summary of the evidence they found and their
decision about the treatment for the patient.

Stage three: participant information-seeking experience questionnaire

In this stage, we asked participants to complete an online REDCap [41] questionnaire regarding
their information-seeking experiences with the tools. The questions (available in the online
supplement) were adapted from the System Usability Scale (SUS) [42], the National Aeronautics
and Space Administration (NASA) Task Load Index (NASA-TLX) tool [43], and from Slager et
al. [22] Two versions of the questionnaire were used, depending on which tool the participant
was randomly assigned to use first. Each participant only needed to complete one survey.

The questionnaire started with items about participants’ demographics, experience with cases in
the domain of the vignettes and experience with literature searching. Next, using 17 Likert scale
items, participants were asked to rate interactive visual displays versus narrative abstracts
according to perceived efficiency, effectiveness, effort, user experience, and preference. The
anchors for each question juxtaposed narrative abstracts in PubMed on one end and interactive
visual displays on the other with the direction of the anchor randomized. For example, the
hypothesis that there would be a difference in perceived effectiveness for users between
interactive visual displays and narrative abstracts was assessed by four survey items: 1)
comprehend the meaning well of the information presented; 2) identify relevant information to
understand the study; 3) effectively identify relevant RCTs from the search results; and 4)
accomplish tasks with minimal frustration. The results were constructed so that there were separate ratings for narrative abstracts and interactive visual displays for each question by centering the scores for both displays separately. Participants were then asked to rate the intention to use and learnability of using interactive visual displays on a 1 (“Strongly Disagree”) to 9 (“Strongly Agree”) scale. Scales were created for each of the constructs as the sum of the ratings given to each of the items in the construct. We reported internal reliability for the scales using Cronbach’s alpha (Table 2). Last, participants were asked to provide suggestions for improving interactive visual displays.

Table 2. Construct items and Cronbach's alpha

<table>
<thead>
<tr>
<th>Construct</th>
<th>Items</th>
<th>Cronbach’s alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experience with the vignettes</td>
<td>1. Dealing with patients in the same clinical domain of the narrative abstracts case vignette;</td>
<td>0.793</td>
</tr>
<tr>
<td></td>
<td>2. Dealing with cases with similar clinical complexity as in the case presented in the narrative abstracts vignette;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Dealing with patients in the clinical domain of the interactive visual display case vignette;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Dealing with cases with similar clinical complexity as in the case presented in the interactive visual display vignette;</td>
<td></td>
</tr>
<tr>
<td>Experience with literature</td>
<td>1. Experience in using computers for work activities;</td>
<td>0.870</td>
</tr>
<tr>
<td>searching</td>
<td>2. Experience in using medical literature search tools in general (e.g., PubMed, UpToDate);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Experience in using PubMed for medical literature search;</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>1. Scan the information quickly</td>
<td>0.877</td>
</tr>
<tr>
<td></td>
<td>2. Quickly obtain the gist of the study findings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Locate information rapidly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Interpret individual RCT results quickly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Quickly compare the results of multiple RCTs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Quickly determine study relevance for the case vignette</td>
<td></td>
</tr>
</tbody>
</table>
Effectiveness
1. Comprehend the meaning well of the information presented
2. Identify relevant information to understand the study
3. Effectively identify relevant RCTs from the search results
4. Accomplish tasks with minimal frustration

Effort
1. Spend the least degree of mental effort
2. Accomplish task effortlessly

User experience
1. Be satisfied with the presentation (i.e., format of the display) of the information
2. Easily use the user interface
3. Enjoy exploring information
4. Have fun seeking information to find answers

Intention to use
1. Help me with clinical decisions for specific patients
2. Find evidence during patient consultations
3. Find evidence after patient consultations
4. Prepare for patient appointments
5. Prepare for patient rounds
6. Prepare for teaching

Data analysis

We analyzed the usability results and the Likert scale items in problem solving to address the following questions below. We performed all the statistical analyses using IBM SPSS Statistics Premium 24 [44].

Is the interface usable? We conducted both qualitative and quantitative analysis to answer this question. We employed a qualitative analysis software (ATLAS.ti) to code, categorize, and analyze users’ verbalizations in the usability stage. To establish reliability for success and time measures, two authors (JB and DB) developed and tested coding protocols and employed the
Cohen's kappa and Pearson’s correlation coefficient (PCC) to measure the interrater agreements. When both measurement metrics reached 0.80, we split the remaining sessions between coders in order to reduce the workload. For each task, we reported the mean, standard deviation, median and range for the time spent and reported the success rate. We analyzed the correlation between the experience with literature searching and success rate of the usability tasks, and also categorized the open-ended comments and reported the descriptive statistics.

Is there a difference in perceived efficiency, effort, effectiveness, user experience and preference between interactive visual displays and narrative abstracts? We employed the paired t-test to assess differences in ratings for each variable. We also assessed if there was a difference between interactive visual displays and narrative abstracts after controlling for years of expertise, tool presentation order, clinical role, experience with literature searching, and experience with cases in the domain of the vignettes.

To answer the question “Do clinicians’ perceived user experience, efficacy, effort and effectiveness predict their intention to use interactive visual displays?” we regressed intention to use on user experience, efficacy, effort and effectiveness.

Results

Interactive visual displays
Following Shneiderman's principles, the interactive visual displays provide information overviews and filters with the option to retrieve details on-demand. These principles guided the design of each of the features in Table 3. These features are operationalized in one of five information displays. They are article list, text summary, comparison table, efficacy graph and side effects graph. The displays can be launched for each case vignette by clicking on the “i” icons at our website [37]. Figures 2 to 4 depict the features listed in Table 3. A drop-down menu is used for switching between five information displays. Article list and text summary information displays aim to help users judge the relevance of an RCT based on the study patient characteristics and the interventions under investigation. The comparison table, efficacy graph and side effects graph information displays allow users to compare the results of relevant RCTs
side-by-side. To avoid visual cluttering, we limited to four the maximum number of studies that can be displayed in the comparison table, efficacy graph and side effects graph information displays.

<table>
<thead>
<tr>
<th>Information Display</th>
<th>Feature</th>
<th>Design Principle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article list table</td>
<td>Information about study population and interventions</td>
<td>Information scent</td>
</tr>
<tr>
<td>Article list table</td>
<td>Hyperlink to full abstract within PubMed</td>
<td>Details on demand</td>
</tr>
<tr>
<td>Article list table</td>
<td>Ability to select specific, most relevant studies for further visualization</td>
<td>Information patch enrichment, Filter and zoom</td>
</tr>
<tr>
<td>Comparison table</td>
<td>PICO (Population, Intervention, Comparison, and Outcome) table structure</td>
<td>Information scent</td>
</tr>
<tr>
<td>Comparison table</td>
<td>Hyperlink to full abstract within PubMed and hyperlink to Efficacy and Side Effect Graph</td>
<td>Details on demand and zoom</td>
</tr>
<tr>
<td>Efficacy graph/side effects graph</td>
<td>Ability to choose different outcome measures or side effects</td>
<td>Information scent and zoom</td>
</tr>
</tbody>
</table>

Table 3. Design principles that inspired each feature in the interactive visual displays.
<table>
<thead>
<tr>
<th>SELECT</th>
<th>TITLE</th>
<th>POPULATION</th>
<th>STUDY_ARMS</th>
</tr>
</thead>
</table>
| | Efficacy and safety of vilaglaptin in patients with type 2 diabetes mellitus inadequately controlled with dual combination of metformin and sulphonylurea. | Type 2 diabetes mellitus (DM2) on Metformin (1500 mg/day or more) plus Glimepiride (4 mg/day or more) | 1. Placebo
2. Vilaglaptin 50 mg Twice Daily + Metformin 1500 mg/day or more + Glimepiride 4 mg/day or more |
| | Dapagliflozin, Metformin XR, or both: Initial pharmacotherapy for Type 2 Diabetes, a randomised control trial (This study includes two trials) | DM2 with hemoglobin A1c (HbA1c) 7.5-12% | Trial One:
1. Metformin 500mg Twice Daily + Placebo
2. Dapagliflozin 5mg Daily + Placebo
3. Dapagliflozin 5mg Daily + Metformin XR
Trial Two:
1. Metformin 500mg Twice Daily + Placebo
2. Dapagliflozin 10mg Daily + Placebo
3. Dapagliflozin 10mg Daily + Metformin XR
4. Dapagliflozin 2.5 mg Twice Daily + Metformin XR |
| | Twice-daily dapagliflozin co-administered with metformin in type 2 diabetes: a 16-week randomized, placebo-controlled clinical trial | DM2 on Metformin (1500mg/day or more) HbA1c: 6.7 - 10.5% | 1. Placebo + Metformin
2. Dapagliflozin 10 mg Daily + Metformin
3. Dapagliflozin 5 mg Twice Daily + Metformin
4. Dapagliflozin 2.5 mg Twice Daily + Metformin |
| | Efficacy and safety of lixagliptin versus sitagliptin, both in combination with metformin, in Chinese patients with type 2 diabetes: a 26-week, open-label, randomised, active comparator clinical trial | DM2 on Metformin (1000mg/day or more) HbA1c: 7.0-10.0 % | 1. Lixagliptin (ini) 1.8 mg Daily + Metformin
2. Sitagliptin 100mg Daily + Metformin |
| | Long-term safety and efficacy of empagliflozin, sitagliptin, and metformin: an active-controlled, parallel-group, randomized, 78-week open-label extension study in patients with type 2 diabetes, | DM2 who completed one of 12 week double blind randomized controlled trial (DBRCT) HbA1c: 7-10 % | 1. Metformin
2. Empagliflozin 10 mg + Metformin
3. Empagliflozin 25 mg + Metformin
4. Sitagliptin + Metformin
5. Empagliflozin 10 mg |

Figure 2. Article list table with trials on various treatments for diabetes mellitus. This display is the landing page of the information displays. It provides a table with *the title*, patient *population*, and *study arms* of each study. The goal is to allow clinicians quickly scan each study and select the relevant ones for further review.
Figure 3. *Comparison table* display with four trials on various treatments for diabetes mellitus.

This display contains key elements of selected studies in a tabular format according to the *PICO* (i.e., **P**opulation, **I**ntervention, **C**omparison, **O**utcomes) framework [29–32]. Studies are displayed in columns, and attributes of studies are displayed in rows. Study results for primary outcomes and adverse events are represented in bar graphs [45]. Hovering over a bar brings up a callout with details on the intervention of the selected study arm. The scale of each measure is normalized across all studies to enable direct visual comparison.
Figure 4. Efficacy graph display (top) and side effects graph display (bottom) with four trials on various treatments for diabetes mellitus. These two displays provide graphical comparisons of study primary outcomes and adverse effects respectively. Users can choose to set the bar graph for a specific outcome measure, overall adverse effects, or the most common adverse effect across all the arms of the selected studies.

Formative evaluation

The formative evaluation results are structured according to the research questions.

The interface is usable.
After two WebEx recording sessions (one resident and one attending) were coded and analyzed by DB and JB independently, the interrater agreement Cohen's kappa (=1.00) and PCC (=0.92) were higher than the threshold established \textit{a priori}, so we split the coding of the remaining recording sessions between two coders. Overall, the participants were able to solve each of the 19 \textit{usability} tasks within a median \textit{time} of 3 to 11 seconds, and a \textit{success} rate of 78\% to 100\% (Table 4).

\begin{table}
\centering
\caption{Time to completion (in seconds) and completion success rate for 19 usability tasks.}
\begin{tabular}{|l|c|c|c|}
\hline
Usability task & Average time & Median time & Success rate \\
& (sec) & [range] & \\
\hline
\textbf{1. On the “Article list” Format} & & & \\
a. Highlight the study arms of the first study. & 7 \(\pm\) 5 & 5 [3-18] & 83\% \\
b. Highlight the population of the second study. & 7 \(\pm\) 14 & 3 [1-59] & 89\% \\
c. Access the PubMed abstract of the first study. & 7 \(\pm\) 6 & 4 [3-21] & 82\% \\
d. This tool provides a textual summary of RCTs. Please find out how to switch to the text summary of the two listed studies. & 4 \(\pm\) 1 & 4 [2-6] & 83\% \\
\hline
\textbf{2. On the “Text summary” format} & & & \\
a. What is the RCT publication journal and year of the first study? & 7 \(\pm\) 6 & 5 [2-26] & 100\% \\
b. Highlight the aim and conclusion of the 2nd study. & 3 \(\pm\) 1 & 4 [1-6] & 100\% \\
c. This tool also provides comparison views for multiple RCTs. Please switch to the comparison view for the two listed studies. & 4 \(\pm\) 3 & 3 [1-13] & 94\% \\
\hline
\textbf{3. On the “Comparison table” format} & & & \\
a. Highlight the study population of the first study. & 6 \(\pm\) 2 & 6 [2-10] & 83\% \\
b. Highlight the study with the largest sample size. & 4 \(\pm\) 3 & 4 [1-14] & 100\% \\
c. Highlight the research arms of the second study. & 5 \(\pm\) 2 & 5 [2-9] & 94\% \\
d. Identify one of the study endpoints reported in both studies. & 8 \(\pm\) 5 & 7 [3-20] & 83\% \\
e. Within trial 1, which \textit{drug therapy} resulted in greatest total cholesterol reduction? & 11 \(\pm\) 10 & 9 [3-44] & 78\% \\
f. Which \textit{drug therapy} across the two trials showed the best response in terms of Total Cholesterol reduction? & 6 \(\pm\) 4 & 5 [2-17] & 78\% \\
\hline
\end{tabular}
\end{table}
g. Which drug therapy across the two trials showed the best response in terms of HDL increase?
 12 ± 7 11 [4-25] 100%

h. Highlight the conclusion of the first trial.
i. This tool also provides graphical visualization of RCTs.
Please switch to the graphical view.
5 ± 3 5 [2-12] 89%

4. On the “Efficacy graph” format:
a. Set the graph to show LDL outcomes.
b. Which drug regimen across the two trials showed the greatest reduction in LDL?
c. Switch back to the main menu.
4 ± 2 3 [1-8] 83%
4 ± 2 3 [1-10] 100%
3 ± 1 3 [1-6] 100%

Experience with literature searching was modestly correlated with success for the usability tasks. (r = 0.417, P = .10). A total of 14 out of 20 participants responded to the open-ended comments section, which we analyzed into categories. “Great tool” was the most frequent comment category (6 out of 14 participants), followed by “allow more than 4 studies for comparison” (5 out of 14 participants). Other less frequent comment categories included: request for more features, request for more information, request for clearer display, and prefer narrative abstracts in PubMed (Appendix Table A2).

Clinicians favored interactive visual displays over narrative abstracts on perceived efficiency, effectiveness, effort, user experience and preference.
The paired t-test results showed that clinicians favored interactive visual displays over narrative abstracts on all of the variables: efficiency $t_{(18)} = 10.43$, (means = 7.86 vs. 2.14 respectively),
effectiveness $t_{(19)} = 6.90$ (mean = 7.36 vs. 2.64),
effort $t_{(19)} = 8.24$ (mean = 7.50 vs. 2.50),
user experience $t_{(19)} = 7.94$, (mean = 7.51 vs. 2.49) and preference $t_{(19)} = 8.62$ (mean = 8.00 vs. 2.00). All differences are significant ($P < .001$). Figure 5 displays the comparison results.
In addition, participants’ years of expertise, tool presentation order, clinical role, experience with literature searching and experience with cases in the domain of the vignettes were not correlated with any of the participants’ perception variables (all $P > 0.05$, Appendix Table A3), which indicates that there is no need to control for these factors when comparing the difference between the two tools.

Do clinicians’ perceived user experience, efficacy, effort and effectiveness predict their intention to use interactive visual displays?

A scale for intention to use was created from six variables and had a Cronbach alpha of 0.971 (Table 2). We regressed intention to use on user experience, efficacy, effort and effectiveness. The stepwise linear regression, which removes the variable with the highest beta weight sequentially, showed that efficiency was the only item that entered the prediction model ($R^2_{(16)} = 0.661$, $t=5.59$, $F_{(16)}=31.26$ and $P < .001$) after controlling for all others.

Figure 5. Mean differences for participants’ perceived efficiency, effectiveness, effort, user experience and preference of interactive visual displays versus narrative abstracts.
Discussion

The goal of this work was to design a novel information display to help clinicians interpret, compare, and apply evidence from RCTs in clinical settings. We previously investigated a static structured PICO table for representing clinical trial reports and found that clinicians preferred a tabular PICO display over PubMed’s default search results display [22]. We choose PubMed’s default search results display as a baseline based on two reasons: 1) PubMed is the most widely used resource for browsing the biomedical literature, including RCT publications; 2) PubMed is representative of resources in the same category (e.g., Ovid®, EBSCO®, Scopus®) since biomedical literature databases rely on the same narrative abstracts provided by biomedical journals. In this current study, we added graphical and interactive features to the previous static structured display and conducted a formative evaluation with 20 physicians in a simulation setting with case vignettes. Our results showed that when interpreting and applying research findings to patient care, physicians strongly preferred interactive visual displays that enable direct comparison of the results from multiple RCTs over narrative abstracts.

Information Processing Issues

Our findings suggest that the cognitive tasks involved in reviewing the literature are perhaps more complex than we have been aware of previously. The tasks may involve a compilation of information processing goals (epistemic goals) that vary according to the clinical situation. Because human information processing is essentially goal-oriented, tailoring information to address specific goals is important [46]. Prior work in this area has found that task problem-solving is the most common information need [47]. Our work suggests displays that show adverse events, results by specific outcomes, and population descriptions by experimental arm match the information processing goals of clinicians seeking research information for medication decision-making.

In addition to exploring information processing goals, our results also suggest the need for further exploration of risky decision making in work settings. One area that might be particularly fruitful is the well-established and robust findings from research in the “description-experience gap.” [48] This body of research has found large differences in decision-making between choices
based on experience versus choices based on the provision of descriptive information. In general, physicians may weigh the probability of a loss (adverse events) and gain (treatment effectiveness) differently when being presented evidence than from their experience. Examining how displays can improve the accuracy of decision-making probability estimates is also an area of further research [48].

Information Foraging and information visualization principles (listed in Table 3) guided this study. Participants’ preference for interactive visual displays can be attributed to the following reasons. First, interactive displays, as the central piece of visual analytics [49], provide clinicians with multiple advantages [50,51]. For example, with the interactive functions, only relevant information is presented up-front, and further details can be provided on demand. Second, the use of graphics reduces clinicians’ cognitive effort when interpreting the results of multiple clinical trials [52]. In our displays, users can make direct comparisons both between and within clinical trials on the same display minimizing working memory overload [53]. Third, the PICO framework has been recommended to clinicians when formulating evidence-based clinical questions [25]. Therefore, our PICO tabular displays provide a consistent structure that is compatible with clinicians’ mental model, facilitating their understanding of the gist of the evidence presented in RCTs [54].

Technology Adoption

According to the technology acceptance model (TAM) proposed by Davis [55] and expanded on by UTAUT [56], perceived ease-of-use (PEOU), performance beliefs (i.e., how well does it help me do my task), perceived effort, and social norms predict the actual use of a new technology. Findings from our usability study (PEOU) suggest that the prototype is easy to use. Most participants completed the usability task correctly within a short period of time with minimal training. In the clinical problem-solving session (performance beliefs and effort), participants’ preference of the interactive visual displays was significantly higher than the narrative displays according to several perceived ability measurements. The performance of perceived ability measurements was not correlated with any of the clinicians’ characteristics, suggesting that our finding is generalizable to a different range of users. The within-subjects design with randomized
vignette assignment and tool presentation order minimizes the impact of the participant’s individual differences. We did not measure social norms. In sum, the interactive visual displays have the potential to ease clinicians' effort to interpret evidence from the primary literature at the point of care.

The stepwise regression analysis of the clinical problem-solving stage showed that efficiency was the only factor that predicted intention to use. Also, multicollinearity analysis showed that only one dimension exists, which means that all the predicting factors are correlated with each other. It is likely that perceived efficiency or effectiveness is the most general latent variable. It is possible that all the post-study questions measure the participants’ general attitude towards the tool with little distinction among factors.

Implications for the reporting of RCTs

Our study findings add to the growing evidence supporting alternative information display formats to convey the gist of clinical studies [11–22], suggesting that the standard format of scientific reporting, especially for article abstracts, is worth reconsidering. The ideal abstract display format should match clinicians’ mental model to reduce cognitive workload in interpreting clinical study results. Much progress has been made with the increased adoption of structured abstracts, which are more readable, easier to search, preferred by readers, and easier to peer review than traditional unstructured abstracts [57,58]. Our findings suggest that interactive visual displays could further improve the presentation of summaries of clinical studies.

On important challenge in enabling interactive visual displays of clinical studies is the lack of a widely adopted standard data model for reporting study methods and results in computable format. National clinical trial registries such as ClinicalTrials.gov have taken an important step towards the implementation of structured reporting. However, several challenges still exist such as automatically extracting key study data from clinical trial registries [59]; incomplete linkage between clinical trial publications and clinical trial registration [60]; time delay between clinical trial publication and reporting of results in clinical trial registries [59]. Increasing requirements for structured reporting of clinical trials could be a possible solution. For example, core clinical
journals could adopt and require structured reporting of clinical trial results using a common computable data model.

Limitations

This study has several limitations. First, we have not analyzed how much time participants spent looking at each component or piece of information in the information displays. Methods based on eye-tracking devices can be used in future studies to provide deeper insight into how users process the information presented on the screen. Second, the case vignettes did not have a single right or wrong answer, so it was impossible to measure the effect of the interactive visual displays on the accuracy of clinical decisions. Nevertheless, the vignettes were purposefully complex to stimulate a challenging information seeking experience. Third, in this simulation study, we limited the information displays to 10 studies per case vignette. In real search sessions, the number of studies in a search result can be much higher.

Future work

The RCT data under the interactive visual displays were manually extracted from a limited set of hand selected RCTs. Future work is needed to automate the RCT data extraction process, leveraging resources such as ClinicalTrials.gov or RCT data extraction algorithms [59,61–63]. This work is underway, with a prototype currently available. Future studies should also implement the interactive visual displays in clinical settings and investigate its effect on clinicians’ patient care decisions and clinical outcomes.

Conclusion

This study shows when interpreting and applying research findings to patient care, physicians preferred graphical, interactive and PICO-framework-based information displays that enable direct comparison of the results from multiple RCTs than the traditional narrative format of
article abstracts. Future studies should investigate the use of these displays in clinical care settings and their effect on improving clinicians’ patient care decisions and clinical outcomes.

Conflict of interest
None declared.

Acknowledgement
This project was supported by National Library of Medicine grants: 1R01LM011416-01, and T15LM007124. We also would like to thank the Richard A. Fay and Carol M. Fay Endowed Graduate Fellowship for funding support.

REFERENCES

33. MEDLINE/PubMed via PICO [Internet]. [cited 2015 Dec 7]. Available from:

Abbreviations
- **PCC**: Pearson’s correlation coefficient
- **PICO**: Population, Intervention, Comparison, and Outcome
- **RCT**: randomized controlled trials